首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The environmental profile of hydrogen depends greatly on the nature of the feedstock and the production process. In this Well-to-Wheels (WTW) study, the environmental impacts of hydrogen production from lignocellulosic biomass via pyrolysis and subsequent steam reforming of bio-oil were evaluated and compared to the conventional production of hydrogen from natural gas steam reforming. Hydrogen was assumed to be used as transportation fuel in an internal combustion engine vehicle. Two scenarios for the provision of lignocellulosic biomass were considered: wood waste and dedicated willow cultivation. The WTW analysis showed that the production of bio-hydrogen consumes less fossil energy in the total lifecycle, mainly due to the renewable nature of the fuel that results in zero energy consumption in the combustion step. The total (fossil and renewable) energy demand is however higher compared to fossil hydrogen, due to the higher process energy demands and methanol used to stabilize bio-oil. Improvements could occur if these are sourced from renewable energy sources. The overall benefit of using a CO2 neutral renewable feedstock for the production of hydrogen is unquestionable. In terms of global warming, production of hydrogen from biomass through pyrolysis and reforming results in major GHG emissions, ranging from 40% to 50%, depending on the biomass source. The use of cultivated biomass aggravates the GHG emissions balance, mainly due to the N2O emissions at the cultivation step.  相似文献   

2.
In this study, carbon-free fuels -ammonia and hydrogen-are proposed to replace heavy fuel oils in the engines of maritime transportation vehicles. Also, it is proposed to use hydrogen and ammonia as dual fuels to quantify the reduction potential of greenhouse gas emissions. An environmental impact assessment of transoceanic tanker and transoceanic freight ship is implemented to explore the impacts of fuel substituting on the environment. In the life cycle analyses, the complete transport life cycle is taken into account from manufacture of transoceanic freight ship and tanker to production, transportation and utilization of hydrogen and ammonia in the maritime vehicles. Several hydrogen and ammonia production routes ranging from municipal waste to geothermal options are considered to comparatively evaluate environmentally benign methods. Besides global warming potential, environmental impact categories of marine sediment ecotoxicity and marine aquatic ecotoxicity are also selected in order to examine the diverse effects on marine environment. Being carbon-neutral fuels, ammonia and hydrogen, yield significantly minor global warming impacts during operation. The ecotoxicity impacts on maritime environment vary based on the production route of hydrogen and ammonia. The results imply that even hydrogen and ammonia are utilized as dual fuels in the engines, the global warming potential is quite lower in comparison with heavy fuel oil driven transoceanic tankers. Geothermal energy sourced hydrogen and ammonia fuelled transoceanic tankers release about 0.98 g and 1.65 g CO2 eq. per tonne-kilometer, respectively whereas current conventional heavy fuel oil tanker releases about 5.33 g/tonne-kilometer CO2 eq. greenhouse gas emissions.  相似文献   

3.
This study aims to provide a comprehensive environmental life cycle assessment of heat and power production through solid oxide fuel cells (SOFCs) fueled by various chemical feeds namely; natural gas, hydrogen, ammonia and methanol. The life cycle assessment (LCA) includes the complete phases from raw material extraction or chemical fuel synthesis to consumption in the electrochemical reaction as a cradle-to-grave approach. The LCA study is performed using GaBi software, where the selected impact assessment methodology is ReCiPe 1.08. The selected environmental impact categories are climate change, fossil depletion, human toxicity, water depletion, particulate matter formation, and photochemical oxidant formation. The production pathways of the feed gases are selected based on the mature technologies as well as emerging water electrolysis via wind electricity. Natural gas is extracted from the wells and processed in the processing plant to be fed to SOFC. Hydrogen is generated by steam methane reforming method using the natural gas in the plant. Methanol is also produced by steam methane reforming and methanol synthesis reaction. Ammonia is synthesized using the hydrogen obtained from steam methane reforming and combined with nitrogen from air in a Haber-Bosch plant. Both hydrogen and ammonia are also produced via wind energy-driven decentralized electrolysis in order to emphasize the cleaner fuel production. The results of this study show that feeding SOFC systems with carbon-free fuels eliminates the greenhouse gas emissions during operation, however additional steps required for natural gas to hydrogen, ammonia and methanol conversion, make the complete process more environmentally problematic. However, if hydrogen and ammonia are produced from renewable sources such as wind-based electricity, the environmental impacts reduce significantly, yielding about 0.05 and 0.16 kg CO2 eq., respectively, per kWh electricity generation from SOFC.  相似文献   

4.
Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply.Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction.However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions.The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.  相似文献   

5.
The growth in demand for the production of heat and electricity requires an increase in fuel consumption by power equipment. At the moment, the most demanded thermal equipment for construction and modernization is gas turbine units. Gas turbines can burn a variety of fuels (natural gas, synthesis gas, methane), but the main fuel is natural gas of various compositions. The use of alternative fuels makes it possible to reduce CO2 and NOx emissions during the operation of a gas turbine. Under conditions of operation of thermal power plants at the wholesale power market, it becomes probable that combined cycle power units, designed to carry base load, will start to operate in variable modes. Variable operation modes lead to a decrease in the efficiency of power equipment. One way to minimize or eliminate equipment unloading is to install an electrolysis unit to produce hydrogen.In this article the technology of “Power to gas” production with the necessary pressure at the outlet of 30 kgf/cm2 (this pressure is necessary for stable operation of the fuel preparation system of the gas turbine) is considered. High cost of hydrogen fuel during production affects the final cost of heat and electric energy, therefore it is necessary to burn hydrogen in mixture with natural gas. Burning a mixture of 5% hydrogen fuel and 95% natural gas requires minimal changes in the design of the gas turbine, it is necessary to supplement the fuel preparation system (install a cleaning system, compression for hydrogen fuel). In addition, the produced hydrogen can be stored, transported to the consumer. For the possibility of combustion of a mixture of natural gas and hydrogen fuel in a gas turbine the methodology of calculation of thermodynamic properties of working bodies developed by a team of authors under the guidance of Academician RAS (the Russian Academy of Sciences) V.E. Alemasov has been adapted, resulting in a program that allows to obtain an adequate mathematical model of the gas turbine. The permissible range of the working body temperature is limited to 3000 K. This paper presents the developed all-mode mathematical model of a gas turbine.On the basis of mathematical modeling of a gas turbine, a change in the main energy and environmental characteristics is shown depending on the composition of the fuel gas. Adding 5% hydrogen to natural gas has little effect on the gas turbine air treatment system, the flow rate remains virtually unchanged. CO2 emissions decrease, but there is an increase in the amount of H2O in the turbine exhaust gases.  相似文献   

6.
A life cycle assessment of hydrogen and gasoline vehicles, including fuel production and utilization in vehicles powered by fuel cells and internal combustion engines, is conducted to evaluate and compare their efficiencies and environmental impacts. Fossil fuel and renewable technologies are investigated, and the assessment is divided into various stages.  相似文献   

7.
A new design concept using solar utility to supply steam and electricity for biodiesel production was proposed. A new indicator, called the renewability index, was then defined and quantified by exergy to evaluate the benefits of substituting fossil fuel utility facilities with solar utility facilities. To reduce the unfavorable environmental impacts of the biodiesel production process, a novel process on an 8000 t a?1 scale with solar utility facilities was designed and simulated using Aspen Plus. The results show that the amount of fossil fuel consumption saved per year amounts to 1275 t of standard coal and 4676 t of CO2 release is also eliminated every year. The renewability index of the biodiesel production process with solar utility facilities is 99.9%, 10.5% higher than that with fossil fuel utility facilities. The results reported in this paper indicate that the unfavorable environmental impacts of the biodiesel production process also deserve attention and the impacts can be eliminated by using solar utility facilities.  相似文献   

8.
Hydrogen is broadly utilized in various industries. It can also be considered as a future clean energy carrier. Currently, hydrogen is mainly produced from typical fuels such as coal; however, there exist some other clean alternatives which use water decomposition techniques. Water splitting via the copper-chlorine (Cu–Cl) thermochemical cycle is a superb option for producing clean carbon-free fuel. Here, the life cycle assessment (LCA) technique is used to investigate the environmental consequences of an integrated solar Cu–Cl fuel production facility for large-scale hydrogen production. The impact of varying important input parameters including irradiation level, plant lifetime, and solar-to-hydrogen efficiency on various environmental impacts are investigated next. For instance, an improve in the solar-to-hydrogen efficiency from 15% to 30%, results in a reduction in the GWP from 1.25 to 6.27E-01 kg CO2 eq. An uncertainty analysis using Monte Carlo simulation is conducted to deal with the study uncertainties. The results of the LCA show that the potential of acidification and global warming potential (GWP) of the current system are 8.27E-03 kg SO2 eq. and 0.91 kg CO2 eq./kg H2, respectively. According to the sensitivity analysis, the plant lifetime has the highest effect on the total GWP of the plant with a range of 0.63–1.88 kg of CO2 eq./kg H2. Results comparison with past thermochemical-based studies shows that the GWP of the current integrated system is 7% smaller than that of a solar sulfur-iodine thermochemical cycle.  相似文献   

9.
The purpose of this study is to assess the political, economic and environmental impacts of producing hydrogen from biomass. Hydrogen is a promising renewable fuel for transportation and domestic applications. Hydrogen is a secondary form of energy that has to be manufactured like electricity. The promise of hydrogen as an energy carrier that can provide pollution-free, carbon-free power and fuels for buildings, industry, and transport makes it a potentially critical player in our energy future. Currently, most hydrogen is derived from non-renewable resources by steam reforming in which fossil fuels, primarily natural gas, but could in principle be generated from renewable resources such as biomass by gasification. Hydrogen production from fossil fuels is not renewable and produces at least the same amount of CO2 as the direct combustion of the fossil fuel. The production of hydrogen from biomass has several advantages compared to that of fossil fuels. The major problem in utilization of hydrogen gas as a fuel is its unavailability in nature and the need for inexpensive production methods. Hydrogen production using steam reforming methane is the most economical method among the current commercial processes. These processes use non-renewable energy sources to produce hydrogen and are not sustainable. It is believed that in the future biomass can become an important sustainable source of hydrogen. Several studies have shown that the cost of producing hydrogen from biomass is strongly dependent on the cost of the feedstock. Biomass, in particular, could be a low-cost option for some countries. Therefore, a cost-effective energy-production process could be achieved in which agricultural wastes and various other biomasses are recycled to produce hydrogen economically. Policy interest in moving towards a hydrogen-based economy is rising, largely because converting hydrogen into useable energy can be more efficient than fossil fuels and has the virtue of only producing water as the by-product of the process. Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international alike levels.  相似文献   

10.
The use of hydrogen as an alternative fuel is gaining more and more acceptance as the environmental impact of hydrocarbons becomes more evident. A life cycle assessment study has been carried out to investigate the environmental aspects of hydrogen production. Production by natural gas steam reforming and production upon renewable energy sources are examined. Hydrogen is selected as a future alternative fuel because of the absence of CO2 emissions from its use, its high-energy content and its combustion kinetics. A very large number of environmental burdens result from the operation of the different hydrogen production routes. A complete and accurate identification and quantification of the environmental emissions has been attempted. The use of wind, hydropower and solar thermal energy for the production of hydrogen are the most environmental benign methods. The benefits and the drawbacks of the competing hydrogen production systems are presented.  相似文献   

11.
The potential for hydrogen production from three major renewable resources (wind energy, solar energy and biomass) in Argentina is analyzed. This potential for the annual production of wind, solar and biomass hydrogen is represented with maps showing it per unit area in each department. Thus, by using renewable resource databases available in the country, a new Geographic Information System (GIS) of renewable hydrogen is created. In this system, several geographic variables are displayed, in addition to other parameters such as the potential for renewable hydrogen production per department relative to transport fuel consumption of each province or the environmental savings that would imply the production of hydrogen required to add 20% V/V to CNG, with the aim of developing the cleaner alternative CNG + H2 fuel. In order to take into account areas where energy development would be restricted, land use and environmental exclusions were considered.  相似文献   

12.
The volatility of fossil fuel and their increased consumption have exacerbated the socio-economic dilemma along with electricity expenses in third world countries around the world, Pakistan in particular. In this research, we study the output of renewable hydrogen from natural sources like wind, solar, biomass, and geothermal power. It also provides rules and procedures in an attempt to determine the current situation of Pakistan regarding the workability of upcoming renewable energy plans. To achieve this, four main criteria were assessed and they are economic, commercial, environmental, and social adoption. The method used in this research is the Fuzzy Analytical Hierarchical Process (FAHP), where we used first-order engineering equations, and Levelized cost electricity to produce renewable hydrogen. The value of renewable hydrogen is also evaluated. The results of the study indicate that wind is the best option in Pakistan for manufacturing renewable based on four criteria. Biomass is found to be the most viable raw material for the establishment of the hydrogen supply network in Pakistan, which can generate 6.6 million tons of hydrogen per year, next is photovoltaic solar energy, which has the capability of generating 2.8 million tons. Another significant finding is that solar energy is the second-best candidate for hydrogen production taking into consideration its low-cost installation and production. The study shows that the cost of using hydrogen in Pakistan ranges from $5.30/kg to $5.80/kg, making it a competitive fuel for electric machines. Such projects for producing renewable power must be highlighted and carried out in Pakistan and this will lead to more energy security for Pakistan, less use of fossil fuels, and effective reduction of greenhouse gas emissions.  相似文献   

13.
The automobile sector dominated by conventional fossil fuels greatly impacted human lives and strengthened the economy of many countries. However, the harmful emissions from the engines have contaminated the environment and induced severe climate changes; hence the emphasis is being laid on low carbon fuels that emit lower emissions and greenhouse gases. In this regard, hydrogen (H2) is considered as a no-carbon fuel; however, safety and storage are the main concerns. Therefore, the H2 can be potentially utilized with compressed natural gas (CNG) to form hydrogen-enriched compressed natural gas (HCNG) and processed with biofuels to produce hydrogenated biofuels. HCNG emits 20% lower carbon dioxide, 30% less carbon monoxide and 25% reductions in NOx emissions compared with CNG. The hydrogenated biodiesel fuels exhibit higher cetane number and better storage stability. However, the practical challenge is to render them economically affordable with minimum carbon footprints. Thus, the current review is aimed to provide comprehensive detail on the potential of hydrogen in fuel formulation techniques and their effect on engine performance, emission characteristics and various hydrogen production methods viz. blue and green hydrogen. Further, this review highlights the techno-economic characteristics of hydrogen utilization and economic characteristics of the low carbon fuels (both liquid and gaseous fuels) for sustainable mobility.  相似文献   

14.
With the seasonal availability and low energy density of biomass and the high environmental impact of coal, the co-gasification of biomass and coal is an alternative approach facilitating a trade-off between renewable and non-renewable resources. The aim of this study was to investigate hydrogen production from the co-gasification of biomass and coal integrated by means of the sorption-enhanced water gas shift reactor (G-SEWGS) for a high temperature proton exchange membrane fuel cell (HT-PEMFC). The effects of the gasifier temperature, the steam to fuel ratio (S/F ratio), and the equivalence ratio (ER) on the hydrogen production performance and environmental impact of the G-SEWGS were theoretically analysed and compared with the conventional gasifier integrated with the water gas shift reactor (G-WGS) and the sorption-enhanced gasifier integrated with the water gas shift reactor (SEG-WGS). As compared to the conventional water gas shift reactor, the addition of a CaO sorbent in the modified water gas shift reactor not only reduces the amount of the CO2 emission but also leads to an increase in the hydrogen concentration and hydrogen content. The G-SEWGS provides better performance in terms of its fuel processor efficiency and CO2 emission than the G-WGS and the SEG-WGS. Also, the problem of sulphur compound in the hydrogen-rich gas can be reduced by using of the sorption-enhanced water gas shift reactor (SEWGS). The best system exergy efficiency, which was around 22% for the power generation, was determined from the HT-PEMFC integrated with the G-SEWGS. The main exergy destruction of around 70% of the total loss was caused by hydrogen production processes.  相似文献   

15.
Ammonia borane (AB) is a promising chemical hydrogen storage material because of its high H2 intrinsic material capacity and the exothermicity of the dehydrogenation reactions. A major technical barrier for AB, however, is in the development of an energy-efficient regeneration scheme. This paper examines three promising regeneration schemes that are in various stages of development and verification in the laboratory. The first scheme utilizes a thiol to digest the spent fuel and requires reforming formic acid to close the fuel cycle. The second scheme utilizes an alcohol to digest the spent fuel, but not all steps in the process have been formulated or tested. The third scheme is a single-reactor process that uses hydrazine to regenerate spent AB, but the production of hydrazine from hydrogen is itself not a trivial process. Engineering flowsheets were constructed for each of the three regeneration schemes and the process energy requirements for each scheme were calculated. Additionally, total energy requirements across the entire chain of production, delivery, storage, recovery, and regeneration were evaluated to determine the total cycle well-to-tank energy efficiency and greenhouse gas emissions. The well-to-tank efficiency ranges from a low of 8% in one version of the third regeneration scheme to as high as 37% in the second scheme if the missing process steps were to have no impact on efficiency. The estimated greenhouse gas emissions are between 20 and 100 kg CO2-equivalent per kg H2 delivered to the vehicle.  相似文献   

16.
A life cycle assessment has been undertaken in order to determine the environmental feasibility of hydrogen as an automotive fuel in Western Australia. The criterion for environmental feasibility has been defined as having life cycle impacts equal to or lower than those of petrol. Two hydrogen production methods have been analysed. The first is steam methane reforming (SMR), which uses natural gas (methane) as a feedstock. The second method analysed is alkaline electrolysis (AE), a mature technology that uses water as a feedstock. The life cycle emissions and impacts were assessed per kilometre of vehicle travel.  相似文献   

17.
Gasification of biomass can be used for obtaining hydrogen reducing the total greenhouse gases emissions due the fixation of CO2 during photosynthetic processes. The kind of raw materials is an important variable since has a great influence on the energy balance and environmental impacts. Wastes from forestry are considered as the most appropriate raw materials since they do not compete for land. The aim of this work is to determine the environmental feasibility of four Spanish lignocellulosic wastes (vine and almond pruning and forest waste coming from pine and eucalyptus plantation) for the production of hydrogen through gasification. LCA methodology was applied using global warming potential, acidification, eutrophication and the gross energy necessary for the production of 1 Nm3 of hydrogen as impact categories. As expected, the use of biomass instead of natural gas leads to the reduction of CO2 emissions. Regarding to the different feedstocks, biomass coming from forestry is more environmental-friendly since does not need cropping procedures. Finally, the distribution of environmental charges between pruning wastes and fruits (grape and almond) and the use of obtained by-products have a great influence, reducing the environmental impacts.  相似文献   

18.
Life-cycle assessment is a useful instrument to evaluate the ecological performance of innovative energy systems. This paper investigates the production process of polymer electrolyte fuel cell (PEFC) stacks, identifies the ecological contributions of various components and materials and compares the results with impacts due to utilization of the stacks in a vehicle (i.e. hydrogen or methanol production and direct emissions). The production of fuel cell stacks leads to environmental impacts which cannot be neglected compared to the utilization of the stacks in a vehicle (the actual driving process). These impacts are mainly caused by the platinum group metals for the catalyst and, to a lesser degree, the materials and energy for the flow field plates. The paper identifies several options how to further enhance the environmental advantages of fuel cells.  相似文献   

19.
In this research study, a real model of a hydrogen fuel cell vehicle is simulated using Simcenter Amesim software. The software used for vehicle simulation enabled dynamic simulation, resulting in more precise simulation. Furthermore, considering that fuel cell degradation is one of the significant challenges confronting fuel cell vehicle manufacturers, we examined the impact of fuel cell degradation on the performance of hydrogen vehicles. According to the findings, a hydrogen vehicle with a degraded fuel cell consumes 14.3% more fuel than a fresh fuel cell hydrogen vehicle. A comprehensive life cycle assessment (LCA) is also performed for the designed hydrogen vehicle. The results of the hydrogen vehicle life cycle assessment are compared with a gasoline vehicle to fully understand the effect of hydrogen vehicles in reducing air emissions. The methods considered for hydrogen production included natural gas reforming, electrolysis, and thermochemical water splitting method. Furthermore, because the source of electricity used for electrolysis has a significant impact on the life cycle emission of a hydrogen vehicle, three different power sources were considered in this assessment. Finally, while a hydrogen vehicle with a degraded fuel cell emits lower carbon dioxide (CO2) than a gasoline vehicle, the emitted CO2 from this vehicle using hydrogen from electrolysis is approximately 25% higher than that of a new hydrogen vehicle.  相似文献   

20.
Recently, in Japan, recycling technologies have been developed using waste biomass material. Waste biomass is traded in the waste materials market between users and a third-party, who receives a fee for processing them. This study is an environmental and economic analysis of a biomass energy system, which can produce hydrogen fuel for fuel cells (purity of 99.99%) as an example of an environmental business model. The experimental apparatus was made based on the moving-bed gasifier by the German company, DM2 Inc., and the hydrogen gas yield was measured. Finally, the economic viability of the future hydrogen business was estimated.The experimental results obtained gave the gas concentration of 57.5% in a Steam/Carbon ratio of 1.40 at 900 °C.Assuming the plant scale of 10 t/d, the production amount of hydrogen gas would be 21.3 kg/h. Based on the law concerning waste processing in Japan, a sizeable amount of waste biomass could be expected. Therefore, if the processing fee which is paid to the group (contractor) ranges between 5.0 and 10.0 $/t, and if the whole investment cost is 6 million dollars and the depreciation period is 15 years, the bio-hydrogen production cost using the experimental data would be 5.75–7.86 $/kg-H2 without receiving related subsidies. In a one-third grant proportion, the cost would become 4.60–6.72 $/kg-H2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号