首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Production of hydrogen and oxygen from water splitting reaction under visible light is a simple method for conversion of solar-to-hydrogen energy and it is a hopeful clean and renewable method for H2 fuel generation. However, there is still a lack of potential materials with significant activity under visible light. Because of safety, chemical inertness, low cost, stability and other characteristics, transition metal oxide semiconductors have been widely applied as photocatalysts for hydrogen generation. Albeit, wide usage of semiconductor photocatalysts were prevented by its inability to exploit solar energy of visible region. Here we show synthesis of a nano-sized mixed metal oxide (MMO) Ca3MnO6 through wet-chemistry methods such as co-precipitation, ultrasonic, microwave, reflux, and hydrothermal methods. The nano-sized Ca3MnO6 has initially selected based on morphology and respective particle diameters. The selected sample shows a well-defined single crystal, free from any impurities, complete structural formation, and a band gap energy (Eg) of around 5.3 eV. The best product synthesized in ultrasonic method which shows the best morphology, purity and the highest efficiency for splitting of water to hydrogen and oxygen. Irrespective of preparation methods and morphologies, all samples split water into hydrogen and oxygen, as confirmed from their respective photocatalytic analysis. When the selected sample combined with (NH4)2Ce(NO3)6, the single-crystal Ca3MnO6 nanoparticles split water into hydrogen and oxygen more efficiently under visible light. Our findings demonstrate the importance of nanostructured Ca3MnO6 single-crystal photocatalysts in solar water splitting.  相似文献   

2.
Samples containing from 1 to 33 wt.% of NiO on silica and alumina doped with silica (1 and 20 wt.% silica in the support) have been prepared and characterized by BET, XRD, FT-IR, UV–vis–NIR, FE-SEM, EDXS, and TPR techniques. Catalysts have been pre-reduced in situ before catalytic experiments and data have been compared with Ni/Al2O3 reference sample. Characterization results showed that SiO2 support has a low Ni dispersion ability mainly producing segregated NiO particles and a small amount of dispersed Ni2+ in exchange sites. Instead, for the Si-doped alumina a “surface spinel monolayer phase” is formed by increasing Ni loading and, only when the support surface is completely covered by this layer, NiO is formed. Moreover, H2-TPR results indicated that NiO particles are more easily reduced compared to Ni species. Low loading Ni/SiO2 catalysts show high selectivity and moderate activity for RWGS (reverse Water Gas Shift) reaction, likely mainly due to nickel species dispersed in silica exchange sites, as evidenced by visible spectroscopy. High loading Ni/SiO2 catalysts show both methanation and RWGS but evident short-term deactivation for methanation, attributed to large, segregated Ni metal particles, covered by a carbon veil. Ni on alumina -rich carriers, where nickel disperses forming a surface spinel phase, show high activity and selectivity for methanation, and short-term catalyst stability as well. This activity is attributed to small nickel clusters or metal particles interacting with alumina, formed upon reaction. The addition of SiO2 in Al2O3 support decreases the activity of Ni catalysts in CO2 methanation, because it reduces the ability of the support to disperse nickel in form of the surface spinel phase, thus reducing the amount of Ni clusters in the reduced catalysts.  相似文献   

3.
Today, a unique method of treating environmental contaminants is drawing considerable attention. Organic dyes are significant wastes from myriad industries, including paper, food, and textiles, which have become a serious environmental concern and have the potential to be toxic to humans and living organisms. This study demonstrates the fabrication and characterization of thulium vanadate (TmVO4) nanostructures and TmVO4/Fe2O3 nanocomposites that were effectively applied in the photodecomposition efficiency of cationic and anionic organic contaminants. The TmVO4/Fe2O3 nanocomposites were prepared through a sonochemical method, and triethylenetetramine (TETA) was employed as a precipitating and capping agent. The tests were performed using a probe as a sonication source (60 W, 18 kHz). The impact of TmVO4 content (5, 10, 15, and 30%) on the modification of binary nanocomposites was studied in terms of morphological, optical, and photocatalytic properties. The recyclable magnetic TmVO4/Fe2O3 nanocomposites with 15% TmVO4 achieve 68.3% of eriochrome black t (EBT) utilizing visible origin. More notably, the binary TmVO4/Fe2O3 nanocomposites reveal higher photocatalytic activity than the pure TmVO4 and Fe2O3 nanoparticles.  相似文献   

4.
In this contribution, viability of processing of the flue gas streams as a source of carbon dioxide for the thermo-catalytic conversion was investigated. For this purpose, a Ni/Al2O3 commercial catalyst with known chemical kinetics was utilized. Moreover, a transient mathematical model for dynamic catalyst deactivation was developed and validated with experimental results available in the open literature. The developed model was then utilized to understudy an air-cooled membrane reactor. Different tube configurations were understudied and compared to choose the conditions under which high conversion was feasible. Sensitivity analysis revealed that, the space velocity, cooling rate, and feed distribution were all considered to be critical factors. It was revealed that, the presence of membrane resulted in higher conversion through the undertaken reactor. It made it possible to enhance reaction yield of non-membrane reactor through evenly distributing hydrogen along its length. A designed heat-exchanger (HEX) membrane reactor achieved 99% CO2 conversion when the coolant flow rate was reached to 10% of the coolant gravimetric flow rate, feed space velocity was set at 100 h−1 and the feed pressure was set at 10 bars.  相似文献   

5.
Nanostructured Dy2Ce2O7 with good electrochemical hydrogen storage properties has been produced utilizing a novel and green method in the presence of fig extract, for the first time. Fig extract has been employed as novel kind of fuel in the production of pure Dy2Ce2O7. By varying the notable factor, temperature for production, Dy2Ce2O7 structures can be created that are different in morphological features and Coulombic efficiency as well as electrochemical hydrogen storage properties. Diverse techniques have been adopted to examine and characterize the formed Dy2Ce2O7 with the aid of fig extract. Electrochemical hydrogen storage features of the diverse Dy2Ce2O7 samples (formed with the aid of fig extract) have been compared with chronopotentiometry technique at potash solution. Our findings reveal that the nanostructured Dy2Ce2O7 fabricated with the aid of fig extract at 400 °C can possess the best efficiency for store hydrogen. Usage of fig extract, the new and eco-friendly fuel, for synthesis of the nanostructured Dy2Ce2O7 that is efficiently capable to store hydrogen (renewable type of energy carrier), can be helpful to decline and stop the environmental pollution.  相似文献   

6.
Water gas shift reaction is an essential process of hydrogen production and carbon monoxide removal from syngas. In this study, the promotional effect of ZrO2, CeO2, La2O3, Al2O3, and Mn2O3 was investigated on the CO conversion and thermal stability of the copper ferrite in high-temperature water gas shift reaction (HTSR) and hydrogen purification. The powders were synthesized by a simple solid-state route and characterized by XRD, H2-TPR, SEM, FT-IR, TG-DTA, and BET analyses. Promoters (ZrO2, CeO2, La2O3, Al2O3, and Mn2O3) could affect the WGSR performance in activity and stability. In the M-CuFe2O4 catalyst, alumina acts as a texture promoter and aids in the fine dispersion of copper ferrite. The results indicated that the surface area of the Al2O3–CuFe2O4 (210 m2/g) catalyst was higher than the other samples. This catalyst presented higher CO conversion in HTSR and had higher stability at 1000 min on stream. It was found that the incorporation of different contents of alumina had a significant influence on the textural and catalytic properties of the CuFe2O4-based catalysts. The 30%Al2O3–70%CuFe2O4 catalyst exhibited the highest CO conversion of 65% at 350 °C, uniform pore size distribution, and intense interaction between copper ferrite and alumina, causing the effective stabilization of the active phase in the catalyst structure. The findings of this study represent that the solid-state method, due to its simplicity and creation of a mesoporous structure, can also be applied for the preparation of many heterogeneous metal oxide catalysts.  相似文献   

7.
The valorization of cow manure (CM), as bio-waste, under a CO2 atmosphere could be an attractive strategy for tackling the environmental problems related to waste management and CO2 emission and producing valuable syngas. For this purpose, highly loaded Ni–Al2O3 catalysts with alkaline-earth metals (Mg and Sr) were synthesized and applied to the gasification of CM under CO2. The lowest yields of bio-oil (16.98 wt %) and coke (0.34 wt %) and the highest yield of syngas (55.09 wt %) were obtained from the catalytic decomposition of hydrocarbons when Sr was incorporated into Ni/Al2O3 (SN-AO). The highest selectivity for H2 (34.23 vol %) and CO (37.16 vol %) were obtained applying SN-AO followed by Mg-promoted Ni/Al2O3 (MN-AO) and Ni/Al2O3 (N-AO) catalysts. With increasing gasification temperature from 750 °C to 850 °C, the syngas yield (from 55.09 to 70.17 wt %) and H2 concentration (from 34.23 to 38.03 vol %) increased considerably because of the endothermic gasification process. The yield and selectivity of syngas (H2 and CO) increased under CO2 compared to those obtained under N2, indicating the high potential of CO2 for the thermal decomposition and dehydrogenation of the volatile matter.  相似文献   

8.
Ni‐Co/Al2O3‐ZrO2 nanocatalysts with 5, 10 and 15 wt.% nominal Ni content have been prepared by impregnation followed by a non‐thermal plasma treatment, characterized and tested for dry reforming of methane. For nanocatalysts characterization the following techniques have been used: XRD, FESEM, TEM, EDX dot‐mapping, BET, FTIR and XPS. The dry reforming of methane was carried out at different temperatures (550‐850 °C) using a feed mixture of CH4:CO2 (1:1). Among the nanocatalysts studied, the catalyst with the medium Ni content (10 wt.%) was the most active in dry reforming of methane. This higher activity exhibited by Ni‐Co/Al2O3‐ZrO2 catalyst with medium Ni content (10 wt.% ) can be attributed to small and well dispersed particles of Ni within the catalyst. Apart from the narrow surface particle size distribution in the case of Ni(10 wt.%)‐Co/Al2O3‐ZrO2, the presence of small active components with average size of 7.5 nm is proposed to be the reason for the superior performance of the catalyst. Ni(10 wt.%)‐Co/Al2O3‐ZrO2 nanocatalyst had maximum surface area and the lower surface area was observed in the case of Ni(5 wt.%)‐Co/Al2O3‐ZrO2 and Ni(15 wt.%)‐Co/Al2O3‐ZrO2 due to the formation of the larger agglomeration and higher mean particle size of nickel particles, respectively. Although, GHSV enhancment had inverse effect on product yield but yield reduction for Ni‐Co/Al2O3‐ZrO2 catalyst with 10 wt.% Ni was less drastic at high GHSVs. According to XRD and XPS, existence of NiAl2O4 confirms strong interaction between Ni and support but higher loadings of Ni resulted in less NiAl2O4; loser interaction between support and active phase. Small particles of active components and well‐defined dispersion of them in Ni(10 wt.%)‐Co/Al2O3‐ZrO2 nanocatalyst resulted in stability of the catalyst for either feed conversion or H2/CO molar ratio. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, nickel (Ni) and cobalt nickel (Co/Ni) supported on alumina were successfully synthesized by a facile electrolysis procedure and were tested for CO2 methanation. By applying the Ni/Al2O3 catalyst, CO2 conversion reached up to of 10 μmol/g.s, which is 1.4 times higher than Co/Ni/Al2O3, followed by the parent Al2O3. The addition of Co into Ni/Al2O3 has formed spinel phase in Co/Ni/Al2O3, as well as caused a slight increase in the basicity, which directed to the higher formation of formate species as observed by in-situ CO2 + H2 FTIR study. Both catalyst followed the dissociative mechanism during the CO2 methanation. However, bigger metal particles in Co/Ni/Al2O3 caused slower hydrogen dissociation compared to Ni/Al2O3, leading to lower yield of CH4. The optimization study via the response surface methodology (RSM) showed that the yield of CH4 was significantly affected by reaction temperature, followed by treatment time, the ratio of H2:CO2 and lastly the gas hour space velocity (GHSV).  相似文献   

10.
In the present study, a series of Cr2O3 powders modified by different promoters such as Fe, Co, La, and Mn were synthesized using a facile and solvent-free mechanochemical method and the prepared powders were used as a catalyst carrier for the preparation of 20 wt%Ni catalysts in CO2 methanation. The results indicated that among all catalysts, the nickel catalyst supported on the Mn-promoted Cr2O3 exhibited the best catalytic performance. The results showed that there was an optimum for the Mn content and the increment in Mn content up to 15 wt% improved the catalytic performance due to its positive influence on increasing nickel dispersion and catalyst reducibility. The 20 wt%Ni/15 wt%Mn–Cr2O3 catalyst possessed a CO2 conversion of 72.12% and CH4 selectivity of 100% at 350 °C (H2/CO2 = 3 M ratio, GHSV = 18,000 ml/gcat.h) with high stability during 12 h on stream. The obtained results showed that the increment in H2/CO2 molar, and the decrement in GHSV value and calcination temperature improved the catalytic performance.  相似文献   

11.
As the main by-product, sludge was generated during the process of textile wastewater treatment. Due to containing organic compounds, textile sludge has great potential to be effectively reused for production of clean energy. In this work, gasification of textile sludge in supercritical water for hydrogen production was investigated. In order to improve hydrogen production, H2O2 and K2CO3 were used as catalysts. Effects of reaction variables (including temperature, retention time, oxidation coefficient and alkali catalyst dosage) on hydrogen yield were studied. Experimental results indicate that hydrogen yield increases with rise of temperature. When reaction temperature reaches 500 °C, the maximum value of hydrogen yield being 10.6 mol/kg was obtained. When excessive H2O2 was added, decrease of hydrogen yield was achieved. However, the addition of K2CO3 is favor to hydrogen yield, which is about 1.5 times as much as that of without catalyst. Meanwhile, reaction mechanism and kinetics of textile sludge gasification in supercritical water were explored. Reaction activation energy and Arrhenius constants were obtained in the established kinetic model.  相似文献   

12.
The non-polluting nature of photocatalytic H2 production makes of interest the study of semiconductors for this process. Scale-up of the photocatalytic hydrogen process to a pilot plant requires the photocatalyst's immobilization to enhance the charge transfer and facilitate its recovery. In this work, screen-printed films from the AV2O6 (A = Ca, Sr, Ba) semiconductor family were fabricated and evaluated in photocatalytic water splitting for H2 production in distilled water and seawater under UVA light. The films exhibited ∼3.1 eV band gaps, high crystallinity, and heterogeneous morphologies. BaV2O6 film exhibited the highest H2 production in distilled water (691 μmol/g), related to the synergistic effect between a higher crystallinity and traces of V+4 species that decrease the recombination of the photogenerated charges. Also, to take advantage of the dissolved species in seawater that could act as sacrificial agents, the BaV2O6 film was evaluated in seawater, in which H2 production was up to 6 times higher (4374 μmol/g) than in distilled water. The BaV2O6 film was decorated with simple oxides (CuO, NiO, and ZnO) by the ink-jet printing technology to increase its photocatalytic performance for H2 production. The highest efficiency with distilled water was obtained with the BaV2O6-CuO film, which reached an H2 production up to 30 times higher than the bare BaV2O6, own to the n-p heterostructure formation that enhances the charge transport in the photocatalytic process. When the BaV2O6-CuO film was evaluated in seawater, a more constant H2 production was observed; moreover, the efficiency was similar compared to the production in distilled water (20,563 μmol/g). To elucidate the seawater compounds that most influence the H2 production, a two levels Plackett–Burman experiments design was carried out in simulated seawater. The analysis revealed that the SO42− ions from the CaSO4 could be decreasing the H2 production by acting as Lewis's acid sites that trap the photogenerated e competing for its usage with the H+. Additionally, the Cl ions and the HCO3 reduction improved the HCOOH production from simulated seawater, reaching 26 times a higher production (23,333 μmol/g) than in distilled water.  相似文献   

13.
Li2MnO3/LiMnBO3/MnFe2O4 ternary nanocomposites were synthesized via modified pechini sol-gel approach employing the mixture of metal cations, boric acid, ethylene glycol and ethylene diamine tetra acetic acid gelating agent. Shape and size of nanocomposites was controlled by changing molar ratio of metal ions, ethylene glycol and gelating agent. In order to confirmation of crystalline and structural features of products, analyses of X-ray diffraction, Fourier transform infrared and energy dispersive X-ray were carried out. Scanning electron microscopy and transmission electron microscopy images were taken for morphology investigation of nanostructure products. Band-gap of ternary nanocomposites calculated by UV–Vis data is 2.6 eV. Magnetic property of Li2MnO3/LiMnBO3/MnFe2O4 ternary nanocomposites investigated through vibrating sample magnetometer presents ferromagnetic behavior. Moreover, photocatalytic activity of Li2MnO3/LiMnBO3/MnFe2O4 and Li2MnO3/LiMnBO3 nanocomposites was investigated in aqueous solution via UV and visible light for degradation acid red 88 dye. Some effective parameters such as dye concentration, irradiation and nanocomposite type were evaluated for optimum removal of water pollutant dye.  相似文献   

14.
Finding the appropriate photocatalyst for elimination of organic contaminants is a challenge for remediation of environment. Herein, we tried to synthesis of ZnCo2O4/Co3O4 nanocomposite using the Stevia extract as a natural reagent that can act as green fuel in auto-combustion sol-gel method and control the size of product by steric-hindrance induced by its structure. The chelating role of this natural reagent was investigated by changing the amount of this extract for synthesis of different samples. Analyses confirmed the effect of this parameter on morphology and size of products. The photocatalytic activities of different samples under visible irradiation were investigated and the effect of size of photocatalyst on degradation percent of dye was studied. The good performance of ZnCo2O4/Co3O4 nanocomposite was detected by degradation of Acid violet 7 about 93.5% in 70 min and 2-phenol about 100% in 18 min. Photocatalyst was easily recycled through magnetic properties of products and stability of it under irradiation was confirmed by degradation of dye after 10 times recycling.  相似文献   

15.
Enhanced catalytic performance is required to increase the efficiency of hydrogen production from waste-derived synthesis gas via the high-temperature water-gas shift reaction (HT-WGSR). Herein, the effects of barium, zirconium, and neodymium doping on the physico-chemical properties of a Ce/Cu/Al2O3 catalyst as well as its catalytic performance for HT-WGSR are investigated. Ce/Cu/Al2O3 catalysts with various additives (barium, zirconium, and neodymium) prepared via a sequential impregnation method have been characterized by using N2 adsorption-desorption isotherms, X-ray powder diffraction (XRPD), N2O-titration, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and hydrogen temperature-programmed reduction (H2-TPR). Advantageously, barium and zirconium addition enhance the HT-WGSR activity and stability of the Ce/Cu/Al2O3 catalyst, whereas neodymium doping has a negative effect. Regarding the correlation of catalytic performance with the characterization results, it was found that catalytic activity and stability strongly depended on their oxygen vacancy concentration and strong-metal to support interaction.  相似文献   

16.
Hydrogen is a promising candidate to substitute the fossil fuels. However, the efficient hydrogen storage technologies restrict the commercial applications. Developing new catalysts with high activity and selectivity is important for the dehydrogenation reaction in N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NECZ/12H-NECZ) hydrogen storage system. In this work, a series of Pd-M/Al2O3 (M = Co, Ni and Cu) bimetallic catalysts are synthesized successfully and show good performance in the dehydrogenation reaction of 12H-NECZ than the commercial Pd/Al2O3 catalyst. The Pd1Co1/Al2O3 catalyst (Practical Pd content = 2.4136 wt%) showed the highest catalytic performance with 95.34% H2 release amount, TOF of 230.5 min−1 and 85.4% selectivity of NECZ. Combined with the characterization analysis, it can be proposed that the dehydrogenation performance of 12H-NECZ is dependent on the alloy phases, reasonable electronic structures and nanoparticle size of catalysts. The fine-tuned alloy degree and appropriate nanoparticle size of Pd1Co1/Al2O3 bring the 17.7% increase of H2 release amount and 99.5% increase of NECZ selectivity than those of Pd/Al2O3. For the bimetallic catalysts, the enhancement of selectivity of NECZ is mainly from the increase of the kinetic constant of rate-limiting step.  相似文献   

17.
High-purity hydrogen can be generated by hydrolysis of sodium borohydride and used for operating portable proton exchange membrane fuel cells. The monolith supported catalyst is suitable for practical NaBH4-based hydrogen generation system due to its simple reactor structure miniaturizing for small size applications and easy separation from the spent solution. In the present study, a structured catalyst was prepared by wash-coating the Al2O3 sol over the wall of cordierite monolith followed by depositing Pt using incipient wet impregnation method; then the monolithic catalysts were characterized by XRF, XRD, SEM, HRTEM and XPS. The catalytic activity of the Pt-based monolithic catalyst towards hydrolysis of NaBH4 was tested using a flow reactor under ambient conditions in an autothermal manner. The characterization results show that Pt nanoparticles are highly dispersed on the surface of the Al2O3-coated layer. A continuous and stable hydrogen generation can be obtained by feeding the reactant (10 wt% NaBH4–5 wt % NaOH) into the tube reactor loaded with the monolithic catalyst at feed rates of 0.5–2.0 mL min−1.  相似文献   

18.
Nowadays, increasing environmental pollution as well as restrictions on the use of fossil fuels have shifted the attention toward using hydrogen as a new source of clean and effective energy. Additionally, hydrogen and syngas are employed as feedstock for the production of valuable materials in the petrochemical industry. Methane steam reforming is the main procedure for the hydrogen and syngas production. In this study, Taguchi design of experiment (L9) was used to investigate the effects of simultaneous presence of copper (Cu) and Zinc (Zn) metals on different Ni/Al2O3 catalyst loads. It should be noted that some of the catalysts were characterized using XRD, BET, SEM and TGA analyses. According to the Taguchi design, it was concluded that the increment of Cu content enhances the catalyst stability and increases the CO selectivity. Increasing Zn content advocated CH4 conversion, H2 yield, and less selectivity toward the CO production. The XRD, BET and SEM test results revealed that the addition of Cu resulted in better distribution of active support phase. The TGA results indicated that the addition of Cu and Zn stabilized the catalyst activity; in this case, Cu was more effective than Zn. The overall results demonstrated that 15% load of Ni on Al2O3 support, simultaneous addition of Cu and Zn loads of 1% and 5%, respectively, enhanced the catalyst stability and activity and improved the catalyst performance in the selective hydrogen production as well.  相似文献   

19.
Hydrogen is a clean energy carrier for the future. More efficient, economic and small-scale syngas production has therefore important implications not only on the future sustainable hydrogen-based economy but also on the distributed energy generation technologies such as fuel cells. In this paper, a new concept for syngas production is presented with the use of redox stable lanthanum chromite and lanthanum ferrite perovskites with A-site doping of Ba, Ca, Mg and Sr as the pure atomic oxygen source for the catalytic partial oxidation of methane. In this process, catalytic partial oxidation reaction of methane occurs with the lattice oxygen of perovskites, forming H2 and CO syngas. The oxygen vacancies due to the release of lattice oxygen ions are regenerated by passing air over the reduced nonstoichiometric perovskites. Studies by XRD, temperature-programmed reduction (TPR) and activity measurements showed the enhanced effects of alkaline element A-site dopants on reaction activity of both LaCrO3 and LaFeO3 oxides. In both series, Sr and Ca doping promotes significantly the activity towards the syngas production most likely due to the significantly increased mobility of the lattice oxygen in perovskite oxide structures. The active oxygen species and performance of the LaACrO3 and LaAFeO3 perovskite oxides with respect to the catalytic partial oxidation of methane are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号