首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
In this study, a modified hydrothermal method is reported for the preparation of Sb2Te3 and Bi0.5Sb1.5Te3 nanoplates and their bulk samples was prepared by spark plasma sintering (SPS). The crystal structure, morphology, and thermoelectric properties were investigated. The microstructure results indicate that the bulk samples consisted nanograins after SPS. The presence of nanograins, high Seebeck coefficient (181 μV/K), high electrical conductivity (763 Ω?1 cm?1), and low thermal conductivity (1.15 W/mK) has been achieved in Sb2Te3 nanoplate bulk samples. As a result, the dimensionless thermoelectric figure of merit (ZT) of 0.55 at 400 K was achieved. Moreover, the peak ZT shifted to higher temperature compared with other reported results found in literature.  相似文献   

3.
(Bi1-xSbx)2Te3 thermoelectric thin films were deposited on stainless steel discs in 1 M perchloric acid and 0.1 M tartaric acid by pulse electrodeposition in order to optimize the grain growth. The influence of the electrolyte composition, the cathodic current density and the cathodic pulse time on film stoichiometry were studied. The results show that it is necessary to increase the Sb content in the electrolyte to obtain the (Bi0.25Sb0.75)2Te3 film stoichiometry. Pulse plating reduced the grain size and the roughness, compared with continuous plating. Thermoelectric and electrical properties were also studied and it was found that the Seebeck coefficient and electrical resistivity were related to two parameters: the cathodic pulse current density and the films thickness.  相似文献   

4.
《Ceramics International》2017,43(17):14976-14982
Bi2Te3–MWCNT nanocomposite has been synthesized by hydrothermal technique and demonstrate the role of MWCNT for thermoelectric properties. Herein, MWCNT has been used as conducting filler, which leads to the enhancement in the electrical conductivity in the case of nanocomposite. Bi2Te3–MWCNT nanocomposite shows ~22% decrease in the thermal conductivity as compared to Bi2Te3 nanostructures, which is attributed to the enhanced phonon scattering at the interfaces of Bi2Te3–MWCNT nanocomposite. Due to the increase in the electrical conductivity and decrease in the thermal conductivity, the overall enhancement in the figure of merit is ~45% in Bi2Te3–MWCNT nanocomposite as compared to Bi2Te3 nanostructures.  相似文献   

5.
Elemental composition, crystal and grain structures, specific electrical resistivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure-of-merit of n-type grained Bi1.9Gd0.1Te3 compounds, spark-plasma-sintered at TS = 690, 720, 750, 780 and 810 K, have been studied. All the samples are highly textured along the 001 direction parallel to the pressing direction. The average grain size measured along the pressing direction is much less as compared to the average grain size measured in the perpendicular direction. A strong anisotropy in the transport properties measured along directions parallel and perpendicular to the pressing direction was found within the 290 ÷ 630 K interval. Electrical resistivity decreases and thermal conductivity increases for parallel orientation as compared to these properties for perpendicular orientation. The TS - effect on thermoelectric figure-of-merit of textured Bi1.9Gd0.1Te3 compounds has been found and analyzed. Highest thermoelectric figure-of-merit (∼0.75) was observed for sample with TS = 750 K at perpendicular orientation.  相似文献   

6.
Elemental composition, crystal and grain structures, specific electrical resistivity, thermopower, thermal conductivity, and thermoelectric figure-of-merit of grained Bi1.9Gd0.1Te3 compounds sintered at TS = 690, 720, 735, 750, 780 and 810 K have been studied. Strong TS – effect on the grain structure was found. Fine-grained samples with average grain size of ˜500 nm were prepared at TS = 690, 720 and 735 K, whereas coarse-grained samples with average grain size above 1100 nm were sintered at TS = 750, 780 and 810 K. Evaporation of Te takes place at high temperatures, which results in forming of anti-site defects of Bi in Te-sites. Electrical and thermal properties of the fine-grained and coarse-grained samples happened to be rather different. The highest value of the thermoelectric figure-of-merit equal to ˜ 0.55 was observed for the sample sintered at TS = 750 K. This temperature corresponds to transition from the fine-grained to coarse-grained samples.  相似文献   

7.
Spark plasma sintering (SPS) was applied to prepare textured Bi1.9Gd0.1Te3 compounds with various grain structures, tuned by changing in the sintering temperature. The grains forming ordered lamellar structure under texturing are elongated in plane oriented perpendicularly to SPS-pressing direction. As result, average grain size measured parallel to this direction and corresponding to fine-grained samples happened to be much less as compared to relevant size for perpendicular direction characteristic for coarse-grained samples. Anisotropy in electrical resistivity inherent for single crystal was found to be partially recovered in textured samples, i.e. resistivity measured along directions parallel or perpendicular to SPS-pressuring direction is different. Moreover, resistivity for both directions is increasing with decreasing in grain size or with decreasing in intergrain distance. Grain size effect on resistivity due to grain boundary scattering of electrons was found to be anisotropic, since the effect is observed for different ranges of change in average grain sizes.  相似文献   

8.
The potentially useful role of lanthanum zirconate (La2Zr2O7, LZO) porous bulk ceramics has been rarely explored thus far, much less the optimisation of its pore structure. In this study, LZO porous ceramics were successfully fabricated using a tert-butyl alcohol (TBA)-based gelcasting method, and the pore structures were tailored by varying the initial solid loading of the slurry. The as-prepared ceramics exhibited an interconnected pore structure with high porosity (67.9 %–84.2 %), low thermal conductivity (0.083–0.207 W/(m·K)), and relatively high compressive strength (1.56–7.89 MPa). The LZO porous ceramics with porosity of 84.2 % showed thermal conductivity as low as 0.083 W/(m·K) at room temperature and 0.141 W/(m·K) at 1200 °C, which is much lower than the counterparts fabricated from particle-stabilized foams owing to its unique pore structure with a smaller size, exhibiting better thermal insulating performance.  相似文献   

9.
《Ceramics International》2023,49(7):10360-10364
Tin dioxide (SnO2) has recently proved to be a promising material for thermoelectric applications. We have investigated the influence of highly valence Bi doping as an electron donor in oxygenated SnO2 materials on their thermoelectric properties. We have synthesized the pure and Bi doped SnO2 nanoparticles (x = 0%, 5%, 10%, and 15%) through a simple hydrothermal approach. The Seebeck coefficient and Hall measurements have been used to determine thermoelectric behaviour. The measured value of the Seebeck coefficient increases from - 56 to - 83 μV/°C as the Bi content increases. This improvement in the Seebeck coefficient has been attributed to the charge carrier localization (energy filtering effect) caused by the inclusion of the bismuth atoms and the presence of secondary phases based on BiO2. However, the electrical conductivity measurements show an inverse relation with the Bi doping, increasing the impurities. The Sn1-xBixO2 sample with x = 15 has achieved the maximum Seebeck value, resulting in the upward trend in power factor of up to 1.97 × 10?4 Wm?1C?2. Further, we have used X-ray diffraction and scanning electron microscopy to determine the effect of Bi on the SnO2 crystal structure and surface morphology. Which also demonstrates the presence of composites with mixed phases.  相似文献   

10.
《Ceramics International》2020,46(3):3339-3344
Bismuth telluride (Bi2Te3) is so far the best thermoelectric material for applications near room temperature, and also exhibits large magnetoresistance. While the electrochemical deposition approach can achieve effective growth of the Bi2Te3 films at micrometer thickness, the magnetoresistance transportation behavior of the electrochemically deposited Bi2Te3 films is yet not clear. In this work, we demonstrate the thermoelectric and magnetoresistance behaviors of the micrometer thick Bi2Te3 films deposited via electrochemical deposition approach. The optimum thermoelectric power factor is observed in the Bi2Te3 sample with electrochemical deposition thickness of ~6 μm followed by rapid photon annealing treatment, reaching the magnitude of ~1 μWcm−1K−2 that is similar to the previous reports. In contrast to the single crystalline or vacuum deposited Bi2Te3 or Bi2Se3 films, the electronic transportations of the electrochemically deposited Bi2Te3 are more influenced by the carrier scatterings by the grain boundaries and lattice defect. As a result, their magnetoresistance (MR) shows a distinguished non-monotonic behavior when varying the magnetic field, while the magnitude of their MR exhibits a positive temperature dependence. These MR behaviors largely differ to the previously reported ones from the single crystalline or vacuum deposited Bi2Te3 or Bi2Se3, in which cases their MR monotonically increases with the magnetic field and exhibits negative temperature dependence. This work reveals the previously overlooked role of grain boundary that also regulates the transportation properties of bismuth chalcogenides in the presence of magnetic field.  相似文献   

11.
12.
The Sr5(PO4)3F (S-FAP) crystal material is regarded as one of the most ideal optical materials for diode pumping owing to its huge absorption and emission cross sections and long fluorescence lifespan. In this investigation, S-FAP powders with varying Yb concentrations (0.1–5%) were produced using the coprecipitation method. Then a variety of S-FAP transparent ceramics with varying Yb content were fabricated using hot-pressing sintering. The crystalline phase structure of hexagonal Sr5(PO4)3F was verified by XRD analysis of the precursor powder and the final ceramics. According to the powder SEM, the average grain size and the long axial-radial ratio of powders are decreasing as the Yb3+ concentration increases. Thermal-etched surface SEM reveals nanostructured S-FAP transparent ceramics with an average grain size of less than 200 nm were synthesized. The highest transmittances of the 3% ceramics at 500 and 1100 nm wavelengths are 51% and 79.78%, respectively. The ceramic cross-sectional SEM demonstrated that porosity is the primary scattering source influencing the enhancement of optical characteristics. The absorption, emission, and fluorescence lifetimes of S-FAP transparent ceramics with varying Yb concentrations were tested and discussed, and the absorption and emission cross sections corresponding to the major peak were reported. Some physical parameters of this set of ceramic samples were shown, including thermal diffusivity, specific heat capacity, and thermal diffusivity data, as well as micro-hardness.  相似文献   

13.
《Ceramics International》2016,42(16):17972-17977
MoS2 nanosheets with size of several-hundred nanometers were prepared by a hydrothermal intercalation/exfoliation method, then MoS2/Bi2Te3 composite nanopowders were prepared by a microwave-assisted wet chemical method using the MoS2 nanosheets, TeO2, Bi(NO3)3·5H2O, KOH and ethylene glycol as raw materials. Bulk MoS2/Bi2Te3 nanocomposites were prepared by hot pressing the MoS2/Bi2Te3 composite nanopowders with MoS2 nanosheet content ranging from 0 to 17 wt% at 80 MPa and 648 K in vacuum. X-ray photoelectron spectroscopy and X-ray diffraction analyses indicate that MoS2 and Bi2Te3 did not react each other during the hot pressing. FESEM observation reveals that the MoS2/Bi2Te3 composite samples had a more compact microstructure than the pristine Bi2Te3 bulk sample. The MoS2 phase was relatively randomly dispersed in the composite. At a given temperature, the electrical conductivity of the composites increases first then decreases as the MoS2 content increases, whereas the Seebeck coefficient of the bulk nanocomposites does not change much. A highest power factor, ~18.3 μW cm−1 K−2 which is about 30% higher than that of pristine Bi2Te3 sample, at 319 K has been achieved from a nanocomposite sample containing 6 wt% MoS2.  相似文献   

14.
《Ceramics International》2022,48(24):36773-36780
Interface engineering of thermoelectric powder materials via atomic layer deposition (ALD) has attracted significant research interest owing to the dramatic improvement in energy conversion efficiency. Using ALD to uniformly coat ultrathin (a few nanometers) ZnO layers on the microscale irregular shape of bismuth telluride-based powders is a challenge. An ALD reactor that fluidizes or agitates the powders can be adapted for this purpose. In this study, two types of ALD reactors, a gas fluidization reactor and a rotary reactor, were used to coat selenium-doped bismuth telluride powders with ZnO. Uniform and conformal ZnO layers were successfully grown using both the ALD reactors. However, the crystalline structure, particle size distribution, and chemical bonding states of ZnO were affected by reactor type. Pelletization of the ALD-coated powders was performed by spark plasma sintering at a high temperature (500 °C) and pressure (60 MPa). The morphologies of the powders did not change with palletization; however, differences in the chemical states of the ZnO layers on the BTS powders were observed. It was observed that the remnant water molecules and mobile ion species might compensate for the carrier mobility in pellets made of ALD-coated powders.  相似文献   

15.
16.
We propose a new process for the fabrication of n-type Bi2Te3-xSex (x = 0, 0.25, 0.4, 0.7) compounds. The compounds could be synthesized successfully using only oxide powders as the starting materials via the mechanical milling, oxidation, reduction, and spark plasma sintering processes. The controllability of the Se content could be ascertained by structural, electrical, and thermal characterizations, and the highest thermoelectric figure of merit (ZT) of 0.84 was achieved in Bi2Te2.6Se0.4 compound at 423 K without any intentional doping. This process provides a new route to fabricate n-type Bi2Te3-xSex compounds with competitive ZTs using all oxide starting materials.  相似文献   

17.
To obtain p-type Bi–Sb–Te-based thin films with excellent thermoelectric performance, the Bi0.4Sb1.6Te3 target is prepared by combining mechanical alloying with the spark plasma sintering technique. Afterward, Bi0.4Sb1.6Te3 thin films are deposited via magnetron sputtering at variable working pressures. With an increasing working pressure, the frequency of collisions between the argon ions and sputtered atoms gradually increases, the preferred orientation of (00l) increases, and the sputtering rate decreases. The Seebeck coefficient increases from ∼140 μV/K to ∼220 μV/K as the carrier concentration decreases along with an increasing working pressure. Furthermore, the decrease in carrier concentration and acceleration of carrier mobility also affect the change in electrical conductivity. The maximum power factor of the p-type Bi0.4Sb1.6Te3 thin film deposited at 4.0 Pa and at room temperature exceeds 20.0 μW/cm K2 and is higher than that of most p-type Bi–Sb–Te-based films.  相似文献   

18.
In this article, n-type (Bi1-xPrx)2(Te0.9Se0.1)3 (= 0, .002, .004, .008) alloys were fabricated by high-pressure sintering (HPS) method together with annealing. The effect of high pressure and Pr contents on the microstructure and thermoelectric performance of samples were explored in detail. The results show that the HPS samples are composed of nanoparticles. Pr doping has significant impacts on the electrical and thermal transport properties of the Bi2Te2.7Se0.3 alloys. The HPS sample with = .004 shows the maximum ZT value of .31 at 473 K, which is enhanced by 41% to compare with the Pr-free sample. Annealing can improve the thermoelectric properties by increasing the electrical transport properties and decreasing the thermal conductivity simultaneously. As a result, the highest ZT value of 1.06 is achieved for the annealed sample with = .004 at 373 K, which is beneficial to the thermoelectric power generation.  相似文献   

19.
Ga2O3(ZnO)m (m = integer) homologous compounds are naturally occurring nanostructured materials. Their intrinsically low thermal conductivity makes them attractive for thermoelectric applications. High density Ga2O3(ZnO)m (m = 9, 11, 13, and 15) single phase ceramics were prepared by solid-state reaction. Nano-sized, twin-like V-shaped boundaries parallel to b-axis (apex angle ∼ 60°) were observed for all compositions. Atomic resolution Z-contrast imaging and EDS analysis for m = 15 showed segregation of Ga ions at the interface of V-shaped twin boundaries. Thermal and charge transport properties depend on the value of m. Compositions with m = 9 exhibited very low lattice thermal conductivity of 2 to 1.5 W/m.K at 300 K–900 K; compositions with m=15 showed improved power factor of 140 μW/m. K2 at 900 K leading to a thermoelectric figure of merit (ZT value) of 0.055. This study explores the structural variants and routes to improve the thermoelectric properties of these materials  相似文献   

20.
Hierarchically pore-structured porous diatomite ceramics containing 82.9∼84.5% porosity were successfully prepared for the first time via foam-gelcasting using diatomite powder as the main raw material. Sizes of mesopores derived from the raw material and macropores formed mainly from foaming were 0.02∼0.1 μm and 109.7∼130.5 μm, respectively. The effect of sintering temperature, additive content and solid loading of slurry on pore size and distribution, and mechanical and thermal properties of as-prepared porous ceramics were investigated. Compressive strength of as-prepared porous ceramics increased with sintering temperature, and the one containing 82.9% porosity showed the highest compressive strength of 2.1 ± 0.14 MPa. In addition, the one containing 84.5% porosity and having compressive strength of 1.1 ± 0.07 MPa showed the lowest thermal conductivity of 0.097 ± 0.001 W/(m·K) at a test temperature of 200 ̊C, suggesting that as-prepared porous ceramics could be potentially used as good thermal insulation materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号