共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Journal of Hydrogen Energy》2022,47(60):25454-25464
In this study, NiO and WO3 oxide semiconductors were fabricated on glass substrates by RF Magnetron Sputtering technique. Structural and optical characterizations of the semiconductors were performed using XRD, SEM, and optical absorption measurements. NiO and WO3 thin films were occasionally coated with palladium. In order to investigate the optical response of these semiconductors under hydrogen gas exposure, an optical gas sensor test system was installed and programmed. In both of the coated and uncoated cases, optical absorption changes due to hydrogen gas exposure on the surface were investigated. It was observed that these changes occur between 450 and 850 nm wave lengths range. The absorption in the NiO semiconductor was reduced between these wave lengths, while the absorption was increased in the WO3 semiconductor. In the uncoated state, only NiO gave an optical response to hydrogen gas. While the palladium coated NiO (Pd/NiO) sensor had the best response and recovery times of respectively 70 s and 206 s for 2% fraction of H2 gas at 300 °C constant temperature, the Pd/WO3 sensor gave the best response time of 340 s. Palladium coating resulted in approximately 150% increase in the responses of the NiO sensors at higher H2 concentration. The lower limit of H2 sensing of the Pd/NiO sensors at 300 °C was at the H2 fraction of 0.05%, while for Pd/WO3 sensors this value was 0.025%. 相似文献
2.
《International Journal of Hydrogen Energy》2022,47(2):1076-1082
In view of the wide use of tungsten in fusion experimental devices and the importance of hydrogen isotopes permeation, here we studied the adsorption, dissociation, diffusion and invasion behavior of hydrogen on W doped α-Al2O3 (0001) surface. Based on the first-principle approaches, we found the W substitution for a top surface Al atom is the most energetically favorable. H2 molecule prefers to be adsorbed on the surface W and spontaneously dissociates into two H anions. Near the W defects, H atoms favor to be adsorbed at the W and Al sites rather than O sites on the surface, and within the subsurface layer H can only bond to W stably. As a result, H migration to subsurface should occur around W with an energy barrier as large as 4.22 eV which is much larger than the 1.91 eV around the O atom on undoped α-Al2O3 (0001) surface. These findings suggest that W surface doping is beneficial to α-Al2O3 as tritium permeation barrier. 相似文献
3.
《International Journal of Hydrogen Energy》2020,45(3):2418-2428
The monitoring and classification of different gases, such as H2 and NH3 using a low-cost resistive semiconductor sensor is preferred in practical applications in hydrogen energy, breath analysis, air pollution monitoring, industrial control, and etc. Herein, porous bi-layer Pt/SnO2 thin film sensors were fabricated to enhance H2 and NH3 sensing performance for effective monitoring and classification. Different Pt film thicknesses of 2, 5, 10, and 20 nm were deposited on 150 nm SnO2 film-based sensors by sputtering method to optimize the response to H2 and NH3 gases. Gas sensing results showed that the fabricated Pt/SnO2 films significantly improved the sensor response to NH3 and H2 compared to pure SnO2 thin film. The sensors based on 5 and 10 nm Pt catalyst layers presented the highest responses to H2 and NH3, respectively. The optimal working temperature for NH3 was in the range from 250 °C to 350 °C, and that for H2 gas is less than 200 °C. The response of Pt/SnO2 sensors to CH4, CO, H2S, and liquefied petroleum gas was much lower than that to NH3 and H2 supporting the high selectivity. On the basis of sensing results at different working temperatures or Pt thicknesses, we applied a radar plot and linear discriminant analysis methods to distinguish NH3 and H2. The results showed that H2 and NH3 could be classified without any confusion with different Pt layer thicknesses at a working temperature of 250 °C. 相似文献
4.
AbstractHydrogen doped In2O3 (In2O3:H) films show high conductivity, small dispersion of refractive index and very low extinction coefficient in the visible to near infrared wavelengths. The improved properties make this transparent conducting oxide an ideal candidate for a window electrode of optoelectronic devices. This article describes the control of microstructure of In2O3:H, the relationship between the structure and transport properties and the Si based solar cells incorporating the In2O3:H window electrode. 相似文献
5.
《International Journal of Hydrogen Energy》2019,44(23):11861-11871
The control of coke deposition is one of the most important challenges during reforming processes using Ni/Al2O3 catalysts. To minimize the effects of coke deactivation and increase the catalytic performance, NiY2O3Al2O3 aerogel catalysts were synthesized by the epoxide-initiated gelation method and dried with supercritical CO2. The catalysts with yttria added were evaluated in terms of syngas production and coke formation in biogas reforming reactions in the temperature range of 500–800 °C. The techniques used to characterize the catalysts were nitrogen adsorption tests, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy. Nanoscale and mesoporous catalysts with high specific surface area were obtained. The catalysts maintained an amorphous structure with high metal dispersion and homogeneous distribution. Yttria insertion promoted higher interaction between the active phase and the support in the catalysts. For the first time, profiles for the coke deposition and syngas production were determined simultaneously during reforming reactions. Hydrogen production increased with yttria addition on the catalysts. The syngas production was highest at 800 °C. However, the hydrogen production was highest at 600 and 700 °C. The coke-resistance of the catalysts decreased in the following order: NiY2.5Al > NiY5Al > NiAl > NiY10Al. The yttria promoter showed a decrease in the coke formation of 58 wt% compared to NiAl at 700 °C. NiY2O3Al2O3 aerogel catalysts are a promising alternative in the search for high-coke-resistance catalysts and for increasing the syngas production in biogas reforming reactions. 相似文献
6.
《International Journal of Hydrogen Energy》2019,44(48):26679-26684
Porous silicon oxycarbide (SiCO) is a novel class of nano-porous material with superior gas sensing performance. In this work, the amorphous porous structure of SiC5/4O3/2 is successfully reproduced by simulating the experimental etching process, and the gas sensing performance of porous SiCO at high temperature is investigated. The calculation results show porous SiC5/4O3/2 exhibits a much higher sensitivity towards H2 than CO, NO2 and acetone at 773 K. Compared with the other three gases, H2 absorbed system show shorter adsorption distance and more obvious increasing in density of states around Fermi level. Therefore, porous SiC5/4O3/2 shows a highly selective sensitivity toward H2 at high temperature. Moreover, our results show the Si–C/O units are the major sensing sites of H2 at high temperature, and the large diffusion coefficient of H2 in SiC5/4O3/2 is related to the fast response of porous SiCO gas sensor. 相似文献
7.
Yongxiang Zhang Jianqin Fu Mingke Xie Jingping Liu 《International Journal of Hydrogen Energy》2021,46(7):5799-5811
An updated H2/O2 kinetic mechanism was proposed by incorporating carefully selected reaction rate coefficient and great progress in radical chain mechanisms, in which the uncertainties of rate coefficient were discussed. The performance of the current mechanism was compared to other H2 mechanism and validated against a wide range kinetic targets, including oxidation, decomposition in shock waves, ignition, flame speed and flame structure. Results show that the current mechanism obtains an overall improvement of performance, especially for the flame speed. By using the updated binary diffusion coefficient from ab initio calculations and the chemically termolecular reactions, the current mechanism presents better agreement with the new experimental flame speed at atmospheric pressure and obtains the improved performance with respect to the negative pressure dependence of high-pressure H2 flame. Furthermore, the flame speed predictions are strongly sensitive to the H2O third body efficiency in the H2 mechanism, affecting the water-contained H2 flame. The modeling results of rapid compression machine ignition show that present mechanism can more accurately predicts the ignition delay under engine-like conditions. However, all three mechanisms cannot accurately reproduce the negative pressure dependence behavior of mass burning rate in high-pressure H2 flame, which may be attributed to the fact that the important reaction O + OH(+M) = HO2(+M) that significantly affects lean high-pressure H2 flame is not included in current mechanism. Consequently, continuous works should be emphasized on the reactions that are important but neglected in H2 mechanism. All these not only develop an improved H2 reaction mechanism for high-pressure combustion, but also point out the direction for refining the H2 mechanism. 相似文献
8.
《International Journal of Hydrogen Energy》2022,47(33):14906-14915
Hydrogen evolution reaction (HER) and electrochemical analysis are two important fields of electrochemical research at present. We found that both HER and some electrochemical analytical reactions relied on the concentration of hydrogen ions (H+) in solution, so we intended to develop an electrode material that is sensitive to H+ and can be used for both HER and some electrochemical analyses. In this work, we synthesized Ni3Mo3N coupled with nitrogen-rich carbon microspheres (Ni3Mo3N@NC MSs) as highly efficient electrode material for HER and detection of Hydrogen peroxide (H2O2), which plays an important role in physiological processes. Here the aniline was used as the nitrogen and carbon sources to synthesize Ni3Mo3N@NC. The Ni3Mo3N@NC MSs showed high performance for HER in 1 M KOH solution with a small overpotential of 51 mV at 10 mA cm?2 and superior stability. For H2O2 detection, a detection limit of 1 μM (S/N = 3), sensitivity of 120.3 μA·mM?1 cm?2 and linear range of 5 μM–40 mM can be achieved, respectively. This work will open up a low-cost and easy avenue to synthesize transition metal nitrides coupled with N-doped carbon as bifunctional electrode material for HER and electrochemical detection. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(16):9821-9835
The energy shortage and environmental pollution crises have prompted the investigation of hydrogen based cleaner energy system. Therefore, hydrogen has been considered as a promising energy carrier due to its sustainability and environmentally friendly. This research considered the separation of hydrogen from mixed gas (H2 and N2) by using Pd-based membrane. In order to produce extra high purity of hydrogen, the separation of hydrogen using Pd-based membrane under steady state operation suffers from long time lag and membrane deactivation. These two technical problems leading to the decrease of hydrogen permeability were intensively addressed in this work. The separation of hydrogen was conducted by using a Pd/α-Al2O3 membrane with aim to improve the performance of separation, indicated by time lag and hydrogen recovery. The novel method of the dynamic membrane operation was applied by performing a composition modulation of the feed gas flow rate. The steady state operation was used as a base case for comparison to dynamic operation. All experiments were carried out at 325 °C, atmospheric pressure, and H2/N2 ratio of 1:1, while varying the switching time and concentration amplitude for dynamic operation. The Pd based membrane was prepared, characterized, and it showed no pin hole could be found. The permeability constants for unsteady state condition resulted in higher when compared to steady state condition. The experiment results showed that the recovery of hydrogen under steady state condition was 21%. On the other hands, the recovery of hydrogen under invoked unsteady state operation was significantly improved three times higher than that of the steady state operation. The recovery of hydrogen increased 8–13% when the feed gas amplitude decreased from 1.5 mL/s to 0.5 mL/s. Operations at 300 s switching time and 0.5 mL/s flowrate amplitude reached the hydrogen recovery up to 63%. 相似文献
10.
《International Journal of Hydrogen Energy》2019,44(6):3382-3386
The chemical looping gasification of rice straw using Fe2O3/Al2O3 as oxygen carrier was studied at reaction time of 5–25 min, steam-to-biomass (S/B) ratio of 2.0–4.8, reaction temperature of 750–950 °C, and oxygen carrier-to-biomass of 1.0. The gasification can be regarded completed in 20-min reaction. There exist an optimal S/B ratio of 2.8 and reaction temperature of 900 °C leading to maximum performances yielded are 1.22 Nm3/kg gas yield at 54.6% H2+24.2% CO. The studied Fe2O3 oxygen carrier/rice straw is a feasible platform for syngas production from an agricultural waste. 相似文献
11.
《International Journal of Hydrogen Energy》2023,48(39):14885-14895
Adding the product of water electrolysis (i.e. 2:1 volume of H2 and O2) is an effective strategy to enhance the combustion intensity of NH3/air mixtures. In this work, the laminar burning velocity (LBV) of the obtained NH3/H2/O2/air mixtures was measured at 303 K, 0.1 MPa and compared with the values predicted by seven mechanisms. To improve the prediction performance, a new mechanism is developed based on the existing mechanism and adopted for numerical simulation. The results of this study show that the LBV of NH3 is significantly increased by additional H2 and O2. By comparison, it is found that H2 shows a more significant promoting effect on LBV when the volume ratio of additional H2 and O2 is 2. The concentration of key radicals and the flame temperature increase remarkably due to the addition of H2 and O2, which promote the flame propagation. Furthermore, the experimental results also indicated that the additional H2 and O2 make the burned gas Markstein length decrease on the lean side and increase on the rich side. 相似文献
12.
《International Journal of Hydrogen Energy》2020,45(43):22990-23005
Here we proposed the decreasing in the roughness of asymmetric alumina (Al2O3) hollow fibers by the deposition of a thin graphene oxide (GO) layer. GO coated substrates were then used for palladium (Pd) depositions and the composite membranes were evaluated for hydrogen permeation and hydrogen/nitrogen selectivity. Dip coating of alumina substrates for 45, 75 and 120 s under vacuum reduced the surface mean roughness from 112.6 to 94.0, 87.1 and 62.9 nm, respectively. However, the thicker GO layer (deposited for 120 s) caused membrane peel off from the substrate after Pd deposition. A single Pd layer was properly deposited on the GO coated substrates for 45 s with superior hydrogen permeance of 24 × 10−7 mol s−1m−2 Pa−1 at 450 °C and infinite hydrogen/nitrogen selectivity. Activation energy for hydrogen permeation through the Al2O3/GO/Pd composite membrane was of 43 kJ mol−1, evidencing predominance of surface rate-limiting mechanisms in hydrogen transport through the submicron-thick Pd membrane. 相似文献
13.
Fernando Braun James B. Miller Andrew J. Gellman Ana M. Tarditi Benoit Fleutot Petro Kondratyuk Laura M. Cornaglia 《International Journal of Hydrogen Energy》2012
PdAgAu alloy films were prepared on porous stainless steel supports by sequential electroless deposition. Two specific compositions, Pd83Ag2Au15 and Pd74Ag14Au12, were studied for their sulfur tolerance. The alloys and a reference Pd foil were exposed to 1000H2S/H2 at 623 K for periods of 3 and 30 h. The microstructure, morphology and bulk composition of both non-exposed and H2S-exposed samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). XRD and SEM analysis revealed time-dependent growth of a bulk Pd4S phase on the Pd foil during H2S exposure. In contrast, the PdAgAu ternary alloys displayed the same FCC structure before and after H2S exposure. In agreement with the XRD and SEM results, sulfur was not detected in the bulk of either ternary alloy samples by EDS, even after 30 h of H2S exposure. X-ray photoelectron spectroscopy (XPS) depth profiles were acquired for both PdAgAu alloys after 3 and 30 h of exposure to characterize sulfur contamination near their surfaces. Very low S 2p and S 2s XPS signals were observed at the top-surfaces of the PdAgAu alloys, and those signals disappeared before the etch depth reached ∼10 nm, even for samples exposed to H2S for 30 h. The depth profile analyses also revealed silver and gold segregation to the surface of the alloys; preferential location of Au on the alloys surface may be related to their resistance to bulk sulfide formation. In preliminary tests, a PdAgAu alloy membrane displayed higher initial H2 permeability than a similarly prepared pure Pd sample and, consistent with resistance to bulk sulfide formation, lower permeability loss in H2S than pure Pd. 相似文献
14.
《International Journal of Hydrogen Energy》2022,47(7):4793-4803
To promote the simplification and integration of membraneless microfluidic fuel cell (MMFC) system and combine with flexible portable devices, a flexible on-fiber MMFC exploiting H2O2 as sole reactant is presented, eliminating the separation requirement of fuel and oxidant. Nickel (Ni) nano-particles and Prussian blue with multiwalled carbon nanotube (PB-MWCNT) are coated on hydrophilic braided carbon fibers (BCFs) to serve as the anode and cathode, respectively. The three-dimensional (3D) flow-through anode and cathode with a wealth of exposed electroactive sites improve reactant mass transfer. The anode and cathode are respectively wound on both sides of the middle cotton thread-based flow channel for separation. Under the combination of capillary force and gravity, reactants flow continuously through the fiber-based microchannels without external pumps. Importantly, the H2O2 MMFC achieves the highest maximum power density (MPD) of 14.41 mW cm?2 so far in one-chamber or single-stream H2O2 fuel cells. Besides, no serious deterioration in the power-generation performance is observed in complex practical operating conditions including bending with various angles, repeated folding and dropping. Three presented flexible MMFCs are connected to power a handheld calculator, indicating the tremendous potential of developing micro power supplies based on abundant flexible materials as well as green and sustainable energy. 相似文献
15.
Zhijie Li Shengnan Yan Zhonglin Wu Hao Li Junqiang Wang Wenzhong Shen Zhiguo Wang YongQing Fu 《International Journal of Hydrogen Energy》2018,43(50):22746-22755
Hydrogen gas sensors were fabricated using mesoporous In2O3 synthesized using hydrothermal reaction and calcination processes. Their best performance for the hydrogen detection was found at a working temperature of 260 °C with a high response of 18.0 toward 500 ppm hydrogen, fast response/recovery times (e.g. 1.7 s/1.5 s for 500 ppm hydrogen), and a low detection limit down to 10 ppb. Using air as the carrier gas, the mesoporous In2O3 sensors exhibited good reversibility and repeatability towards hydrogen gas. They also showed a good selectivity for hydrogen compared to other commonly investigated gases including NH3, CO, ethyl alcohol, ethyl acetate, styrene, CH2Cl2 and formaldehyde. In addition, the sensors showed good long-term stability. The good sensing performance of these hydrogen sensors is attributed to the formation of mesoporous structures, large specific surface areas and numerous chemisorbed oxygen ions on the surfaces of the mesoporous In2O3. 相似文献
16.
《International Journal of Hydrogen Energy》2019,44(36):19547-19554
The direct synthesis of hydrogen peroxide (DSH) from hydrogen and oxygen is an attractive production route due to its green nature. However, it faces multiple technical challenges, the biggest being the explosion risk of the flammable gas mixture. Herein we have used microreactors to perform the reaction in an inherently safer way which allows the hydrogen concentration to fall within the explosion limit range. For the first time, we have studied the flame propagation phenomena inside a microreactor to determine the optimum channel dimension for DSH. A mechanism of “fast synthesis and slow destruction” has been proposed via investigation on the influence of channel length and liquid flow rate. Besides, a variety of reaction parameters including gas flow rate, oxygen: hydrogen ratio, catalyst composition and gas pressure have been studied carefully. The successful employment of a microreactor in this case has indicated the potential of using microreactors to inhibit the explosion risks of hazardous processes. 相似文献
17.
《International Journal of Hydrogen Energy》2022,47(87):37052-37071
In this work, extensive chemical kinetic modeling is performed to analyze the combustion and emissions characteristics of premixed NH3/CH4–O2/N2/H2O2 mixtures at different replacement percentages of air with hydrogen peroxide (H2O2). This work is comprehensively discusses the ignition delay time, flame speed, heat release rate, and NOx & CO emissions of premixed NH3/CH4–O2/N2/H2O2 mixtures. Important intermediate crucial radicals such as OH, HO2, HCO, and HNO effect on the above-mentioned parameters is also discussed in detail. Furthermore, correlations were obtained for the laminar flame speed, NO, and CO emissions with important radicals such as OH, HO2, HCO, and HNO. The replacement of air with H2O2 increases flame speed and decreases the ignition delay time of the mixture significantly. Also, increases the CO and NOx concentration in the products. The CO and NOx emissions can be controlled by regulating the H2O2 concentration and equivalence ratios. Air replacement with H2O2 enhances the reactions rate and concentration of intermediate radicals such as O/H, HO2, and HCO in the mixture. These intermediate radicals closely govern the combustion chemistry of the NH3/CH4– O2/N2/H2O2 mixture. A linear correlation is observed between the flame speed and peak mole fraction of OH + HO2 radicals, and 2nd degree polynomial correlation is observed for the peak mole fraction of NO and CO with HNO + OH and HCO + OH radicals, respectively. 相似文献
18.
Ethanol CO2 reforming on La2O3 and CeO2-promoted Cu/Al2O3 catalysts for enhanced hydrogen production
《International Journal of Hydrogen Energy》2020,45(36):18398-18410
3%Ce- and 3%La-promoted 10%Cu/Al2O3 catalysts were synthesized via a sequential incipient wetness impregnation approach and implemented for ethanol CO2 reforming (ECR) at 948–1023 K and stoichiometric feed ratio. CeO2 and La2O3 promoters reduced CuO crystallite size from 32.4 to 27.4 nm due to diluting impact and enhanced the degree of reduction of CuO → Cu0. Irrespective of reaction temperature, 3%La–10%Cu/Al2O3 exhibited the highest reactant conversions, H2 and CO yields followed by 3%Ce–10%Cu/Al2O3 and 10%Cu/Al2O3. The greatest C2H5OH and CO2 conversions of 87.6% and 55.1%, respectively were observed on 3%La–10%Cu/Al2O3 at 1023 K whereas for all catalysts, H2/CO ratios varying from 1.46 to 1.91 were preferred as feedstocks for Fischer-Tropsch synthesis. Activation energy for C2H5OH consumption was also reduced with promoter addition from 53.29 to 47.05 kJ mol−1. The thorough CuO → Cu0 reduction by H2 activation was evident and the Cu0 active phase was resistant to re-oxidation during ECR for all samples. Promoters addition reduced considerably the total carbon deposition from 40.04% to 27.55% and greatly suppressed non-active graphite formation from 26.94% to 4.20% because of their basic character and cycling redox enhancement. 相似文献
19.
《International Journal of Hydrogen Energy》2020,45(3):1671-1680
A modified Stöber method is applied to synthesize the magnetic core-shell Fe3O4@SiO2 particles, followed by compositing a series of porous glucose-derived carbon with ZnCl2 as etchant. Then, ultrafine Pd nanoparticles (NPs) are successfully anchored to the resulting Fe3O4@SiO2-PC composites with an in-situ reduction strategy. The particle sizes of Pd NPs are mainly centered in the range of 2.3–4.3 nm in the as-prepared Pd/Fe3O4@SiO2-PC catalysts, owning a hierarchical porous structure with high specific surface area (SBET = 626.0 m2 g−1) and large pore volume (Vp = 0.61 cm3 g−1). Their catalytic behavior for the hydrogen generation from ammonia borane (AB) hydrolysis is investigated in details. The corresponding apparent activation energy is as low as 28.4 kJ mol−1 and the reaction orders with AB and Pd concentrations are near zero and 1.10 under the present conditions, respectively. In addition, the magnetic catalysts, which could be easily separated out by a magnet, are still highly active even after nine runs, revealing their excellent reusability. 相似文献
20.
Zhiyuan Xin Xiaoran Yin Yunhan Ling Zhengjun Zhang Xiao Liu Hao Liang Xiukun Deng 《International Journal of Hydrogen Energy》2017,42(32):20869-20878
To improve the thermal stability between aluminide and stainless steel substrate and obtain thermodynamically stable phase of alpha-Al2O3, a new Cr2O3/Al2O3 bipolar oxide barrier was proposed, in which metallic Al was sputtered on the preoxidation coating of electroplated chromium and then oxidizing by oxygen plasma. It was found that Cr2O3 film exhibits P-type semiconducting properties while Al2O3 acts as N-type. Hydrogen discharging plasma was used to simulate the in-pile hydrogen permeation. Raman spectra and atomic force microscopy (AFM) were employed to analyze phase structure and surface morphology. Electrochemical impedance spectroscopy and Mott–Schottky were utilized to qualitatively evaluate effective thickness and the integrity for the oxide film. The depth profile and surface chemical states of involving elements were analyzed by auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), respectively. The result shows that Cr2O3/Al2O3 bipolar oxides have improved hydrogen permeation resistance and would be a potential candidate for barrier application. 相似文献