首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Severe photocorrosion and fast photoexcited charges recombination hinder the application of Cu2O in photoelectrochemical (PEC) water splitting. In this work, Ni-doped metal-organic frameworks is firstly applied to improve the performance of electrodeposited Cu2O. A decorative layer of Ni-doped Cu3(BTC)2 (Ni-CuBTC) was in-suit constructed on Cu2O through solvothermal followed by ion-exchange. Cu2O/Ni-CuBTC photocathodes increase absorption edge to ∼800 nm, positive shift flat band position to 0.4 V, and decrease Tafel value to 74 mV/dec. These results confirm the decorative layer can extend light absorption, facilitate photoexcited charge separation and transfer, and enhance HER activity. A photocurrent density of −1.51 mA/cm2 at 0 VRHE is obtained with the decoration of Ni-CuBTC, which is 3.4 times of pristine Cu2O photocathode. Here, the PEC water splitting performance of electrodeposited Cu2O has been significantly improved with noble-metal-free decorations, which provides a new idea for solving the defects of Cu2O based photocathode.  相似文献   

2.
Prevention of hydrogen (H) penetration into passive films and steels plays a vital role in lowering hydrogen damage. This work reports effects of atom (Al, Cr, or Ni) doping on hydrogen adsorption on the α-Fe2O3 (001) thin films and permeation into the films based on density functional theory. We found that the H2 molecule prefers to dissociate on the surface of pure α-Fe2O3 thin film with adsorption energy of −1.18 eV. Doping Al or Cr atoms in the subsurface of α-Fe2O3 (001) films can reduce the adsorption energy by 0.03 eV (Al) or 0.09 eV (Cr) for H surface adsorption. In contrast, Ni doping substantially enhances the H adsorption energy by 1.08 eV. As H permeates into the subsurface of the film, H occupies the octahedral interstitial site and forms chemical bond with an O atom. Comparing with H subsurface absorption in the pure film, the absorption energy decreases by 0.01–0.22 eV for the Al- and Cr-doped films, whereas increases by 0.82–0.96 eV for the Ni-doped film. These results suggest that doping Al or Cr prevents H adsorption on the surface or permeation into the passive film, which effectively reduces the possibility of hydrogen embrittlement of the underlying steel.  相似文献   

3.
Combination of ZnO and Cu2O semiconductors is remarkable for efficient photovoltaic cells and enhanced photoelectrochemical (PEC) performance due to the high electronic energy band alignment of these materials and their controllable electronic structure at the interface. This study reports on a systematic analysis of the effects of Cu2O nanocube doping on the structural properties and PEC performance of ZnO films. ZnO samples doped with Cu2O were prepared by a practical electrochemical method. Characterization of the materials was performed by XRD, Raman, FTIR spectroscopy and electrochemical techniques. The XRD, Raman, FTIR spectroscopy analyses indicated a single phase of ZnO for the lower Cu2O deposition time, while a secondary phase of Cu2O evolved for the 5 min deposition time. This study showed that ZnO doped with Cu2O grown for 3 min had the best PEC performance. ZnO/Cu2O photoelectrodes are recommended as an attractive, competitive and alternative candidate for advanced PEC sensing and this may be for the extended field of water splitting into oxygen and hydrogen under sunlight.  相似文献   

4.
We prepared nanostructured thin films of pristine SrTiO3, Cu2O and SrTiO3/Cu2O heterojunction with varying the thickness of Cu2O. SrTiO3 and Cu2O thin films were deposited on ITO (Sn:In2O3) glass substrate using sol–gel spin-coating technique and spray pyrolysis method respectively. Samples were characterized using XRD (X-ray diffractometry), SEM (Scanning electron microscopy), and UV–Visible absorption spectroscopy. Nanostructured thin films of pristine SrTiO3, Cu2O and SrTiO3/Cu2O heterojunction systems were used as photoelectrode in the Photoelectrochemical (PEC) cell for water splitting reaction. Maximum photocurrent density value of 2.44 mA cm−2 at 0.95 V/SCE were observed for SrTiO3/Cu2O heterojunction photoelectrode with 454 nm thickness, which was approximately 34 times higher than pristine SrTiO3 thin film. Increased photocurrent density observed for the heterojunction can be attributed to the improved conductivity and better separation of the photogenerated charge carriers at the SrTiO3/Cu2O interface.  相似文献   

5.
Composite photocatalysts have aroused great interest due to combination of favorable electronic and optical properties. Herein, novel CdS/Ti–Ni–O composite photoanodes were constructed through anodic fabrication of nanostructured Ni-doped TiO2 (Ti–Ni–O) oxide films and CdS deposition by successive ionic layer adsorption and reaction (SILAR). The morphology and composition evolution, optical properties and photoelectrochemical (PEC) performance of the photoanodes were investigated. The composite nanofilms mainly consisted of micropores and nanotubes. The CdS/Ti–Ni–O composite photoanode demonstrated remarkable PEC hydrogen generation properties with a high photocurrent density (6.72 mA·cm?2 at 0 V vs Ag/AgCl) which was 18.2 times to that of the bare Ti–Ni–O photoanode. The synergy of Ni-doping and CdS-coupling on the enhancement of PEC performance offers useful ideas to the exploitation of effective photocatalysts and contributes to the development of solar-driven PEC hydrogen generation.  相似文献   

6.
Bi2S3 nanorod films were grown on ITO-coated glass substrates through chemical bath deposition (CBD) and annealing in a sulfur atmosphere. The as-deposited films were amorphous/nanocrystalline, with a particle size of 20 nm and a direct optical band gap of 1.87 eV. Upon annealing at 350 °C, the films exhibited a nanorod morphology with a length of 300 nm. Further increasing the temperature from 400 to 450 °C resulted in an increased diameter of nanorods. The direct optical band gap decreased from 1.68 to 1.47 eV upon increasing the annealing temperature from 350 to 400 °C. Photoelectrochemical (PEC) measurements showed that the nanorod films grown on ITO-coated glass substrates exhibited significantly increased PEC activity owing to their nanorod structures. The Bi2S3 nanorod films formed at 400 °C exhibited a maximum photocurrent density of 6.1 mA/cm2 at 1 V, which was 2.5 times higher than that of the as-deposited films. The enhancement in the photocurrent density could be due to the effective visible-light absorption of Bi2S3 nanorods as a result of the increased crystallinity and decreased band gap. This study demonstrates the synthesis route involving a simple and inexpensive CBD method of Bi2S3 nanorod films for the optimized PEC water-splitting applications.  相似文献   

7.
Hydrogen production (HP) by photocatalytic water splitting (PWS) is becoming more and more popular on a global scale. The world's largest and most accessible renewable energy source—the Sun—as well as widely accessible metal oxide-based photoelectrodes are both utilized in this process. The preparation of pure and doped iridium oxide (IrOx) films is attempted in this work in an effort to better understand how Cr and La affect optical and HP efficiency as well as electrode stability. By using FE-SEM, the films' varying thicknesses and nanorod-like morphologies were detected. UV–Vis spectra reveal that the composition has an impact on the films' absorption and reflectance. IrOx has an optical band gap (Eg) of 2.9 eV, and this value decreased/increased after Cr doping/La codoping. The micro-Raman spectra, which showed that the Eg mode of Ir–O stretching was red-shifted from 563 to 553 cm−1, validate the films' amorphous nature. The resultant (IrOx) films were utilized in the HP via the solar photoelectrochemical (PEC) process. The codoped film, which has a solar-to-hydrogen conversion efficiency of 2.32% and a hydrogen evolution rate of 23.5 mmol h−1cm−2, is the most efficient and stable photoelectrode among the electrodes under examination. The highest absorbed photon-to-current conversion efficiency (APCE%) values for pure and codoped IrOx photoelectrodes were 3.62%@460 nm and 5.54%@490 nm, respectively. With enhancement factors of 2.77, 1.89, and 2.90 for pure IrOx, IrOx:5% Cr, and IrOx:Cr,2.5% La, respectively, the Jph increased to 1.58, 1.70, and 1.83  mA cm−2 at 90 °C. After ten runs, the codoped photoelectrode still has 99.2% of its initial photocurrent, compared to 80.8% and 82.8% for pure and Cr-doped IrOx. Calculated Tafel slopes, corrosion rates, and PEC thermodynamic parameters show how codoping and doping affect photoelectrode performance and stability.  相似文献   

8.
Thin film deposition of Cu2O and application for solar cells   总被引:1,自引:0,他引:1  
Deposition conditions of cuprous oxide (Cu2O) thin films on glass substrates and nitrogen doping into Cu2O were studied by using reactive radio-frequency magnetron sputtering method. The effects of defect passivation by crown-ether cyanide treatment, which simply involves immersion in KCN solutions containing 18-crown-6 followed by rinse, were also studied. By the crown-ether cyanide treatment, the luminescence intensity due to the near-band-edge emission of Cu2O at around 680 nm was enhanced, and the hole density was increased from 1016 to 1017 cm−3. Finally, polycrystalline p-Cu2O/n-ZnO heterojunctions were grown for use in solar cells. Two deposition sequences were studied, ZnO deposited on Cu2O and Cu2O deposited on ZnO. It was found that the crystallographic orientation and current–voltage characteristics of the heterojunction were significantly influenced by the deposition sequence, both being far superior for the heterojunction with structure Cu2O on ZnO than for the inverse structure. We successfully obtained a photoresponse for the first time in the deposited thin film of Cu2O/ZnO.  相似文献   

9.
CuO has been considered as a promising photocathodic material for photoelectrochemical (PEC) hydrogen evolution reaction (HER). In this work, CuO films were prepared by a facile and cost-effective method that involves solution synthesis, spin-coating and thermal treatment processes. The resulting CuO films had a monoclinic crystal structure with bandgap energy of 1.56 eV and a conduction band position of 3.73 eV below the vacuum level in borate buffer solution. The CuO films exhibited good PEC activity toward HER and the preparation conditions had great effect on the activity. The photoactivity of the CuO film decayed to approximately 19% of its original value after reaction for 10 h under illumination. The reduction of CuO to Cu2O has been confirmed to be a parallel competitive reaction against HER. The mismatched band structure of the resulting CuO/Cu2O heterojunction was believed to be the main cause of the decay of photoactivity. The photo-assisted electrodeposition method was developed to prepare CuO/Pd composite photocathode. The presence of Pd on CuO greatly increased the photocurrent especially at low overpotentials. In addition, the CuO/Pd composite exhibited significantly improved photostability compared to CuO. This work demonstrates the feasibility of increasing PEC activity and stability of CuO-based photocathodes by combining CuO with noble metal nanoparticles.  相似文献   

10.
An integrated solar water splitting tandem cell without external bias was designed using a FeOOH modified TiO2/BiVO4 photoanode as a photoanode and p-Cu2O as a photocathode in this study. An apparent photocurrent (0.37 mA/cm2 at operating voltage of +0.36 VRHE) for the tandem cell without applied bias was measured, which is corresponding to a photoconversion efficiency of 0.46%. Besides, the photocurrent of FeOOH modified TiO2/BiVO4–Cu2O is much higher than the operating point given by pure BiVO4 and Cu2O photocathode (∼0.07 mA/cm2 at +0.42 VRHE). Then we established a FeOOH modified TiO2/BiVO4–Cu2O two-electrode system and measured the current density-voltage curves under AM 1.5G illumination. The unassisted photocurrent density is 0.12 mA/cm−2 and the corresponding amounts of hydrogen and oxygen evolved by the tandem PEC cell without bias are 2.36 μmol/cm2 and 1.09 μmol/cm2 after testing for 2.5 h. The photoelectrochemical (PEC) properties of the FeOOH modified TiO2/BiVO4 photoanode were further studied to demonstrate the electrons transport process of solar water splitting. This aspect provides a fundamental challenge to establish an unbiased and stabilized photoelectrochemical (PEC) solar water splitting tandem cell with higher solar-to-hydrogen efficiency.  相似文献   

11.
CdO and Cu2O thin films have been grown on glass substrates by chemical deposition method. Optical transmittances of the CdO and Cu2O thin films have been measured as 60–70% and 3–8%, respectively in 400–900 nm range at room temperature. Bandgaps of the CdO and Cu2O thin films were calculated as 2.3 and 2.1 eV respectively from the optical transmission curves. The X-ray diffraction spectra showed that films are polycrystalline. Their resistivity, as measured by Van der Pauw method yielded 10−2–10−3 Ω cm for CdO and approximately 103 Ω cm for Cu2O. CdO/Cu2O solar cells were made by using CdO and Cu2O thin films. Open circuit voltages and short circuit currents of these solar cells were measured by silver paste contacts and were found to be between 1–8 mV and 1–4 μA.  相似文献   

12.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

13.
In present work, we report a facile fabrication process to improve the photoelectrochemical (PEC) performance of ZnO-based photoelectrodes. In order to achieve that, the Cu2O nanocubes are cathodic-deposited on the as-prepared ZnO nanorods. Then rGO nanosheets are electrodeposited on the ZnO/Cu2O heterostructures. The fabricated photoelectrodes are systematically studied in detail by different characterization techniques such as powder X-ray diffraction, micro-Raman, X-ray photoelectron spectroscopy, ultraviolet diffused reflectance spectroscopy and photoluminescence spectroscopy analysis. Morphologies of the fabricated photoelectrodes are investigated through electron microscopy in scanning and transmission mode. To evaluate the PEC performance of the fabricated photoelectrodes, the line scan voltammetry (LSV) measurement is performed using a three-electrode system in 0.5-M Na2SO4 electrolyte solution under stimulated light illumination at 100 mW/cm2 from a 300-W Xenon Arc lamp coupled with an AM 1.5G filter using a three-electrode system. The photocurrent measurement demonstrates that the photoelectrodes based on ZnO/Cu2O/rGO possess enhanced PEC performance compared to the pristine ZnO and ZnO/Cu2O photoelectrodes. The photocurrent density of ZnO/Cu2O/rGO-15 photoelectrode (10.11 mA/cm2) is ∼9 and ∼3 times higher than the photoelectrodes based on pristine ZnO (1.06 mA/cm2) and ZnO/Cu2O (3.22 mA/cm2). The enhanced PEC performance of ZnO/Cu2O/rGO photoelectrode is attributed to the excellent light absorption properties of Cu2O and excellent catalytic and charge transport properties of rGO. Experimental results reveal that the proposed functional nanomaterials have a great potential in water splitting applications.  相似文献   

14.
Conversion of solar energy into hydrogen energy via photoelectrochemical (PEC) water splitting is one of the most promising approaches for generation of clean and sustainable hydrogen energy in order to address the alarming global energy crisis and environmental problems. To achieve superior PEC performance and solar to hydrogen efficiency (STH), identification, synthesis, and development of efficient photoelectrocatalysts with suitable band gap and optoelectronic properties along with high PEC activity and durability is highly imperative. With the aim of improving the performance of our previously reported bilayer photoanode of WO3 and Nb and N co-doped SnO2 nanotubes i.e. WO3-(Sn0.95Nb0.05)O2:N NTs, herein, we report a simple and efficient strategy of molybdenum (Mo) doping into the WO3 lattice to tailor the optoelectronic properties such as band gap, charge transfer resistance, and carrier density, etc. The Mo doped bilayer i.e. (W0.98Mo0.02)O3-(Sn0.95Nb0.05)O2:N revealed a higher light absorption ability with reduced band gap (1.88 eV) in comparison to that of the undoped bilayer (1.94 eV). In addition, Mo incorporation offered improvements in charge carrier density, photocurrent density, with reduction in charge transfer resistance, contributing to a STH (~3.12%), an applied bias photon-to-current efficiency (ABPE ~ 8% at 0.4 V), including a carrier density (Nd ~ 7.26 × 1022 cm?3) superior to that of the undoped bilayer photoanode (STH ~2%, ABPE ~ 5.76%, and Nd ~5.11 × 1022 cm?3, respectively). The substitution of Mo6+ for W6+ in the monoclinic lattice, forming the W–O–Mo bonds altered the band structure, realizing further enchantments in the PEC reaction and charge transfer kinetics. Additionally, doped bilayer photoanode revealed excellent long term PEC stability under illumination, suggesting its robustness for PEC water splitting. The present work herein provides a simple and effective Mo doping approach for generation of high performance photoanodes for PEC water splitting.  相似文献   

15.
Nanostructured conducting polymeric materials are beneficial for electron conduction and mass transport, showing high photocatalytic performance under visible light. Herein, we report a colloidal synthesis of copper and copper oxides (Cu2O) modified polypyrrole nanofibers (PPy) heterostructures, which demonstrates significantly high photocatalytic H2 generation under visible light. The presence of Cu nanoparticles (NPs) of 50 nm and cubic shaped Cu2O nanoparticles of size 200 nm endows the heterostructures with a large specific surface area as well as good dispersion of nanoparticles on PPy nanofibers allows the migration of electron during catalysis. Cu2O/PPy exhibits excellent H2 production (67 mmol h−1) which is 12 times higher than pure PPy (5.7 mmol h−1). The high catalytic activity of Cu2O/PPy heterostructure provides a fervent alternative to noble metal-based catalysts for the hydrogen generation and water splitting.  相似文献   

16.
In this work, pure and (Fe, Ni) co-doped Co3O4 nanostructured photoelectrodes of different doping levels and thicknesses were manufactured at constant substrate temperature (450 °C) using the spray pyrolysis technique. In addition to the chemical compositions; the structural, optical, electrical, and photoelectrochemical (PEC) properties were investigated through the use of various analysis techniques. By increasing the codpoing ratio to 6%, the low energy band gap is decreased from 1.43 to 1.3 eV and the high energy bandgap is increased from 2.63 to 2.87 eV, in addition to the reduction in particle size from 30.2 to 12.0 nm. The high energy gap vanishes by increasing the codoped film's spread volume to 60 ml. X-ray photoelectron spectroscopy of 6%(Fe, Ni)-60ml Co3O4 confirms the existence of Ni2+,3+ and Fe2+,3+. Among the studied photoelectrodes, the 6%(Fe, Ni)-60ml Co3O4 photoelectrode displays a photocatalytic hydrogen output rate of 150 mmol/h.cm2 @-1V in 0.3M Na2SO4 electrolyte. The photocurrent density of 6%(Fe, Ni)-60ml photoelectrode reached up to 13.6 mA/cm2@-1V with an IPCE (incident photon to current conversion efficiency) of ~42%@405 nm and STH (solar to hydrogen conversion efficiency) of ~11.37%, which are the highest values yet for Co3O4-based photocatalysts. The value of ABPE(applied bias photon-to-current efficiency) is 0.34%@(-0.28V and 636 nm). Interestingly, this photoelectrode shows a photogenerated current density of ?0.14 mAcm?2 at 0 V and a PEC current onset over 0.266V. The thermodynamic parameters, corrosion parameters, PEC surface areas, Tafel slopes, and impedance spectroscopies are also being studied to confirm and classify the PEC H2 production mechanism. The 6%(Fe, Ni)-60ml Co3O4 photoelectrode stability/reusability shows only a 6.6% reduction in PEC performance after ten successive runs at -1V with a corrosion rate of 1.2 nm/year. This work offered a new codoping strategy for the design of a highly active Co3O4 based photocatalyst for the generation of solar light-driven hydrogen.  相似文献   

17.
Here, we describe the in-situ synthesis of multicomponent ZnO-based photocatalysts for hydrogen production. We fabricated ZnO coupled with Cu–Cu2O nanoparticles and modified reduced graphene oxide (mRGO) to ameliorate hydrogen production. The simultaneous introduction of mRGO and Cu–Cu2O enhanced the generation rate of photocatalytic hydrogen to 3085.02 μmol g?1 h?1 due to significant alteration of the electronic structure. The bandgap energy of the prepared catalysts decreased from 3.2 eV for pristine ZnO to 2.64 eV for a composite containing 15% Cu–Cu2O. The optimal designed heterostructure efficiently separates photo charge carriers and prevents charge carriers’ recombination by accelerating charge transfer with the help of mRGO and metallic Cu and as a result leading to efficient hydrogen yields.  相似文献   

18.
Solar-to-hydrogen production has attracted increasing attention since it possesses great potential in alleviating energy and environmental crises to some extent. The key issue is to develop efficient photocatalysts exhibiting superior hydrogen production capability. In this work, Cu@TiO2 hybrid (Cu nanoparticles encapsulated in TiO2) has been successfully prepared by Cu2O self-template reduction through solvothermal treatment in ethylene glycol-water mixed solvent. When octahedral Cu2O is involved in the reaction system, the Cu2O@Ti-precursor octahedral structure is first formed and subsequently the Cu@TiO2 hybrid is prepared with the reduction of ethylene glycol (EG). The Cu@TiO2 hybrid derived with different mass of Cu exhibits improved photocatalytic hydrogen production performance compare to pure TiO2 and P25. Among those photocatalysts, the Cu@TiO2-10% (the copper content is 10 wt%) shows the highest hydrogen evolution rate of 4336.7 μmol g?1 h?1, and it is twice as much as the pure TiO2 and 1.9 times as much as P25, respectively. Based on the photo/electrochemical results, an efficient photo-generated electron-hole separation contributes to the enhancement of photocatalytic H2 evolution upon the Cu@TiO2 hybrid. When replacing octahedral Cu2O with cubic and truncated octahedrons ones, the Cu@TiO2 hybrid photocatalysts are also obtained and they also display superior solar-to-hydrogen evolution than pure TiO2 and P25. It is expected this work could develop an approach to design Cu-encapsulated hybrid photocatalysts for hydrogen generation.  相似文献   

19.
P-type Cu2O films with alkaline ions (Li+, Na+ and K+) of unintentional dopants on indium tin oxide coated glass substrate are successfully fabricated via a simple electrodeposition method for photoelectrochemical (PEC) hydrogen generation. The SEM and XRD analysis show the as-grown films with the pyramid-like morphology and cubic structure, and the composition of alkaline-doped Cu2O films are examined using XPS spectroscopy to demonstrate the substitution of alkaline ions in the Cu2O lattice. The optical analyses, including the absorbance and low-temperature photoluminescence spectra, confirm a bandgap of 2.3 eV and the presence of structural defects in alkaline-doped Cu2O films. The Mott-Schottky plot shows the flat band potentials of the alkaline-doped Cu2O films to be approximately ?0.1 V and the hole concentrations in the order of 1017 cm?3. Significantly, the Cu2O:Li film photocathode exhibits a higher photocurrent of ?2.2 mA cm?2 at a potential of ?0.6 V vs Ag/AgCl which are greater than those of Cu2O:K and Cu2O:Na films due to greater preferred orientation degrees along (111) and less structural defects, because the ionic radii of Cu and Li is similar. These results demonstrate the great potential of alkaline doped Cu2O films in solar-related applications.  相似文献   

20.
Cu2O films on flexible copper and molybdenum (Mo) substrates were prepared by electrodeposition form an alkaline bath. The as-deposited films were p-type and the XRD analysis revealed that the film contains only the Cu2O phase. The thickness of the films was calculated from the interference fringes in the reflection spectra. The Au/Cu2O Schottky diodes were prepared by sputtering a 15 nm thick layer of very pure gold onto the Cu2O films on Mo substrate. The probable optical transitions near the band edge were calculated from the spectral response of the device. The band gap calculated at various temperatures show a linear dependence on temperature and the absolute zero value of the band gap is deduced as 2.206 eV. The 2.493 eV direct transition observed in the room temperature shows a temperature dependence. Evidence of phonon assisted indirect transitions were observed at various temperature regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号