首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The machinability of hard brittle polycrystalline ceramic has a strong correlation with internal microstructures and their accommodated deformation behavior. In the present work, we investigate the mechanisms governing the brittle-to-ductile transition behavior of polycrystalline 3C–SiC in diamond cutting by means of molecular dynamics simulations. Simulation results reveal the co-existence of dislocation slip and amorphization-dominated ductile deformation and cracking along grain boundaries-mediated brittle fracture, as well as the correlation of individual deformation modes with machining force variation and machined surface morphology. In addition, inter-granular fracture, grain boundary sliding and grain pull-up are also operating brittle deformation modes of polycrystalline 3C–SiC. The strong competition between above heterogeneous deformation modes determines the brittle-to-ductile transition behavior in grooving of polycrystalline 3C–SiC. Simulation results also demonstrate that grain size has a strong impact on the brittle-to-ductile transition and material deformation behavior of polycrystalline 3C–SiC under diamond cutting.  相似文献   

2.
Deformation-induced characteristics of surface layer strongly rely on loading condition-related operating deformation modes. In the current study we reveal the mechanisms governing machined surface formation of hard brittle monocrystalline 3C–SiC in ultrasonic elliptical vibration-assisted diamond cutting by molecular dynamics simulations. Simulation results show different deformation modes including phase transformation, dislocation activity, and crack nucleation and propagation, as well as their correlations with surface integrity in terms of machined surface morphology and subsurface damage. In particular, molecular dynamics simulations of ordinary cutting are also carried out, which demonstrate the effectiveness of applying ultrasonic vibration of cutting tool in decreasing machining force and suppressing crack events, i.e., promoting ductile-mode cutting for achieving high surface integrity. The physical mechanism governing the machining differences between the two machining processes are also revealed. Furthermore, the effect of cutting depth on machined surface integrity under vibration-assisted cutting and ordinary cutting is addressed.  相似文献   

3.
The trends recently observed in crack propagation studies under bending for thermal barrier coatings (TBCs) in power plant application are highlighted in this paper. These studies described were performed with plasma sprayed zirconia bonded by a MCrAlY layer to Ni-base superalloy. Such thermal barrier composites are currently considered as candidate materials for advanced stationary gas turbine components. The crack propagation behaviour of the ceramic thermal barrier coatings (TBCs) at room temperature, in as received and oxidized conditions reveals that cracks grow linearly in the TBC with increase in bending load until about the yield point of the superalloy is reached. Approaching the interface between the ceramic layer and the bond coat, a high threshold load is required to propagate the crack further into the bond coat. Once the threshold is surpassed, the crack grows rapidly into the brittle bond coat without an appreciable increase in the load. At a temperature of 800°C, the crack is found to propagate only in the TBC (ceramic layer), as the ductile bond coat offers an attractive sink for stress relaxation. Effects of bond coat oxidation on crack propagation in the interface regime have been examined and are discussed. ©  相似文献   

4.
Revealing the ductile deformation mechanisms of ultra-hard brittle cubic silicon carbide (3C-SiC), as well as their correlations with microstructure evolution, are crucial for facilitating the ductile machinability of the ceramic material. In the present work, we report the formation of highly oriented high density stacking faults accompanied with suppressed amorphization and cracking in polycrystalline 3C-SiC in ultrasonic elliptical vibration-assisted diamond cutting, which contributes to significantly enhanced ductile material removal of the ceramic material compared to ordinary cutting. Specifically, characterizations of Raman spectroscopy on machined surface and cross-sectional transmission electron microscopy on subsurface, as well as molecular dynamics simulations of the two kinds of cutting processes, are jointly performed to elucidate the mechanisms of phase transformation and microstructure evolution that govern the ductile material removal of polycrystalline 3C-SiC under the vibration assistance. In particular, the formation mechanisms of highly oriented high density stacking faults emitted from grain boundaries are revealed. Current findings provide insights into the ductile deformation behavior of hard brittle ceramics enhanced by field-assisted deformation process.  相似文献   

5.
Silicon nitride is an advanced ceramic used in high performance applications. One of the main problems in machining of brittle materials such as silicon nitride is subsurface damage (SSD). On the other hand, rotary ultrasonic assisted face grinding (RUAFG) is considered as state of the art machining process for brittle and hard to machining materials such as ceramics and optical glasses. In this research, a new study on SSD generation in RUAFG by establishing both ductile deformation and brittle fracture conducted. To achieve this goal, initially single diamond grit cutting force based on Vickers hardness correlation and indentation fracture mechanics established and placed in crack propagation formulas to anticipate SSD. Verification tests performed and average 8% error detected. Moreover, RUAFG depicted up to 30% SSD reduction in comparing to conventional face grinding (CFG). Besides, scanning electron microscope utilized to investigate cracks morphology.  相似文献   

6.
《Ceramics International》2021,47(20):28419-28428
In this research, a single-diamond grinding test was performed on sintered silicon carbide (SSiC) to explore the damage formation mechanism. A scanning electron microscope and a transmission electron microscope (TEM) were used to examine the surface and subsurface morphologies of the grinding groove, respectively. The characteristics of the ground surface morphologies reveal that the single-diamond grinding process of SSiC can be classified into purely ductile, primarily ductile, primarily brittle, and purely brittle stages. Based on the high-resolution TEM (HRTEM) images and the corresponding Fast Fourier transform images of the near-surface region, results reveal that the high density of dislocations and amorphization of SiC grains are responsible for the plastic deformation of SSiC. Most of the cracks congregate on the top grains of the ground surface due to the distinct obstruction of the grain boundary on the cracks propagation, and the cracks generated at the grain boundaries emit into the top grain interiors and go up toward the exposed surface for the distortedly deformed region with higher strain energy; Furthermore, stress concentration caused by the dislocation pileups at grain boundaries represents the crack initiation mechanisms for SSiC. Finally, based on the dislocations pile-up theory, a critical undeformed chip thickness model for boundary crack system nucleation is established, which considers the cutting-edge radius, grinding wheel speed, material properties, and grain size of ceramics.  相似文献   

7.
Turbine blade cores are made of porous alumina ceramic and determine the molding accuracy of the cavity of turbine blades, which strongly affect thermal diffusion performance and service life of turbine engines. To get a high quality ceramic core, accurate trimming for a preliminarily processed core is needed and therefore, micromachining porous alumina ceramic, which differs from general alumina substrates, is crucial. This paper dealt with a processing technology for the special material via double femtosecond laser scanning. The materials ablation threshold was firstly determined through parameter fitting and then this material was machined at a combination of different laser processing parameters. Considering the produced debris blocks the lasers further propagation into the material, double femtosecond laser scanning was newly proposed and experimentally verified with the comparison of gas jet assist and underwater laser processing ways. The removal profiles of the machined material were characterized in terms of cutting width, cutting depth, deviation of linearity and surface morphology, which exhibited high dependence on the femtosecond laser processing parameters. The optimal laser operating window was identified and high quality laser cutting of the porous alumina ceramic was demonstrated. The developed processing technology has potential application in trimming for ceramic casting cores. In addition, it might also give a novel view for high quality laser micromachining another materials.  相似文献   

8.
9.
Interfacial fracture toughness and cyclic fatigue-crack growth properties of joints made from 99.5% pure alumina partially transient liquid-phase bonded using copper/niobium/copper interlayers have been investigated at both room and elevated temperatures, and assessed in terms of interfacial chemistry and microstructure. The mean interfacial fracture toughness, G c, was found to decrease from 39 to 21 J/m2 as temperature was raised from 25° to 1000°C, with failure primarily at the alumina/niobium interfaces. At room temperature, cyclic fatigue-crack propagation occurred both at the niobium/alumina interface and in the alumina adjacent to the interface, with the fatigue threshold, Δ G TH, ranging from 20 to 30 J/m2; the higher threshold values in that range resulted from a predominantly near-interfacial (alumina) crack path. During both fracture and fatigue failure, residual copper at the interface deformed and remained adhered to both sides of the fracture surface, acting as a ductile second phase, while separation of the niobium/alumina interface appeared relatively brittle in both cases. The observed fracture and fatigue behavior is considered in terms of the respective roles of the presence of ductile copper regions at the interface which provide toughening, extrinsic toughening due to grain bridging during crack propagation in the alumina, and the relative crack propagation resistance of each crack path, including the effects of segregation at the interfaces found by Auger spectroscopy.  相似文献   

10.
Fundamental understanding of the fixed abrasive slicing of photovoltaic silicon wafers is crucial for producing low‐cost wafers with superior surface quality and mechanical strength. With the goal of understanding the diamond wire sawing process, this paper investigates the scribing of mono‐ and multi‐crystalline silicon by the abrasive grits on an actual diamond wire. Specifically, the effects of grit shape and silicon crystal structure on the resulting surface morphology, subsurface damage, and the critical depth of cut at which ductile‐to‐brittle transition occurs are investigated. Results show that surface cracking depends on the grit shape. Scribing across the grain and twin boundaries in multi‐crystalline silicon impacts the resulting surface morphology, with grit shape producing a greater effect than crystallographic orientation in the grain interior relative to the grain boundary. Subsurface damage depends on the grit shape and crystal structure. Differences in the critical depth of cut for ductile‐to‐brittle transition in scribing of mono‐crystalline silicon are explained via analysis of the stress state produced by idealized grit shapes.  相似文献   

11.
Crack induced surface/subsurface damage in SiC ceramic grinding limits the industrial application. A single-grain scratching simulation based on the smoothed particle hydrodynamics (SPH) has been used to analyze the SiC grinding mechanism, including the material removal process, scratching speed effect on crack propagation, ground surface roughness, and scratching force. The simulation results showed that the material removal process went through the pure ductile mode, brittle assisted ductile mode, and brittle mode with the increase of the depth of cut. The critical depth of cut for ductile-brittle transition was about 0.35?µm based on the change of ground surface crack condition, surface roughness, and maximum scratching force. Increasing the scratching speed promoted the transformation of deep and narrow longitudinal crack in the subsurface into the shallow and wide transverse crack on the surface, which improved the surface quality. The SPH simulation results were indirectly validated by the cylindrical grinding experiments in terms of the critical single grain depth of cut for ductile-brittle transition, and the trend of ground surface roughness and grinding forces.  相似文献   

12.
The fracture toughness of the as plasma sprayed alumina–13 wt.% titania (AT-13) coatings was evaluated using micro-indentation techniques. Indentations with smaller loads of 0.49 N show features such as partially melted particles to be extremely hard and brittle. However, the matrix made up of bi-modulus microstructure of splats was much tougher due to operative toughening mechanism for instance, crack bridging, which effectively retarded propagation of the cracks. Log plots of crack length (C) versus load (P) for loads varying from 1.96 to 9.8 N occurred with a slope of 0.65 ± 0.095 signifying sub-surface median or palmqvist type cracks to be rampant. The as sprayed microstructure made of pores; partially melted particles and splats were found to be anisotropic with regard to indentation toughness. Cracks were found to initiate and propagate easily in direction parallel to the coating growth directions than along the splat boundaries. Accordingly the bonding between the splats caused by plasma spray process could be deemed to be superior. The preferential directionality developed in the microstructure due to the imposed heat flow conditions essentially has weakened the microstructure.  相似文献   

13.
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.  相似文献   

14.
《Ceramics International》2020,46(6):7235-7252
This paper studies the damage mechanisms of polycrystalline aluminate magnesium (PAMS) under different loading conditions of indentation tests and micro-cutting with various rake angles of the cutting tools. A decreasing trend is confirmed in the hardness values with growing loadings. The observed hardness value approaches a plateau at about 1406–1679 HV. The tardive cracks, which break out spontaneously within a delayed period of time following the end of indentation, are for the first time observed in the indentation experiment of this paper. The tardive crack originates from a crack system containing a lateral subsurface crack with two median cracks on its both sides. These results imply that PAMS can store the unbalanced strain energy induced by the applied loading within the vicinity of the loaded volume which will be released in accordance with the intergranular crack-growing path extending to the surface. In addition, the linear plunge-cutting tests coin the effect of tool rake angle: the tool with a zero rake angle produces poor surface quality with sever surface damages whilst the tools with negative rake angles can improve the ductility of PAMS to a certain extent. However, negative rake angles are proved to be the root cause of median cracks and large spalling fractures. On the contrary, a positive rake angle tool can be applied to reduce the severity of surface damage and confine the damage patterns mainly as small spallings fractures. Besides the experimental study, finite element method (FEM) models are developed to reveal the underlying mechanism of the rake-angle effect on the micro-cutting process. The simulation results visualise the different stress distributions in the uncut areas and prove that a tool with positive rake angle can transfer the stress to the uncut chip layer whereby the damage probability to the machined surface is significantly reduced.  相似文献   

15.
邓林  张志敏 《硅酸盐通报》2017,36(6):2006-2010
带圆孔的脆性岩板在单轴压缩荷载的作用下,其破坏过程一般经历弹性阶段,劈裂裂纹的产生与扩展,压剪裂纹的产生及岩板破坏几个阶段.分析了弹性阶段的圆孔四周的应力分布,解释了劈裂裂纹的产生机理,确定了劈裂裂纹产生的位置.通过分析开裂后裂纹尖端应力强度因子的变化规律,发现随着孔径的增大,起裂荷载减小,这个结论与实验结果非常吻合.而对于同一模型随着裂纹的扩展,应力强度因子减小,反映了劈裂裂纹的扩展是稳定的.对于岩石这种内部存在很多微小孔洞或不连续面的材料,通过该模型能从宏观唯像上解释岩石在单轴压缩试验中的劈裂破坏机理.  相似文献   

16.
Phenomenologically, coexistence of ductile, semiductile, and brittle fractures in an apparently identical impact testing condition for the elastomer-modified polycarbonates containing a sharper notch and at high test temperatures has been found. At the ductile–brittle transition temperature, approximately 10% of specimens fractured in the semiductile mode with impact strength about the average of the ductile and brittle modes. The fracture surface of this semiductile mode shows ductile tearing flow in the plane-stress regions near the edges and brittle crack in the plane-strain central region. This unusual semiductile fracture occurs only on the thicker specimens with a sharper notch where clear plane-stress and plane-strain are present. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
《Ceramics International》2022,48(9):12819-12828
This paper presents a numerical and experimental study on the single-abrasive scratching of BK7 glass. The formation mechanisms of cracks are investigated for surface integrity evaluation to improve the processing efficiency and ensure surface quality through the inhibition of surface and subsurface damage. The numerical simulation reveals that as the abrasive gradually scratches the target surface, median cracks nucleate at the current position just beneath the abrasive, while symmetrical radial cracks that propagate along the negative direction of the x-axis along the scratching direction are easily nucleated slightly behind the abrasive. The single-abrasive scratching experiments at gradually increasing depths on BK7 glass indicate that as the scratching speed increases, the plastic machinability and machining quality are significantly improved. The predicted nucleation position and propagation direction of the radial cracks on the target surface agree well with the corresponding experimental results. Thus, this study can provide a reference for the actual fabrication of high-value BK7 glass devices with high efficiency and quality.  相似文献   

18.
《Ceramics International》2022,48(15):21389-21406
Due to the excellent biocompatibility and chemical durability, alumina ceramics are widely used in biomedical fields such as dentistry. Meanwhile, the high hardness and brittleness of the alumina ceramic causes difficulties in ensuring the processing quality of conventional machining methods. Ultrasonic vibration-assisted polishing (UVAP) can effectively improve the surface quality of hard and brittle materials as a novel machining method. The surface properties of the alumina ceramic for different ultrasonic amplitudes are obtained in this study. The evaluation of the surface properties includes microscopic topography, frictional property, surface hardness, microscopic strain, and surface roughness. In addition, a surface roughness model of the alumina ceramic is built based on the UVAP machining mechanism. The model considers the effect of different types of abrasive particles (free and fixed abrasive particles) on the material removal mechanism. The experimental results show that the errors of the predicted model are less than 20%. This work will provide some ideas for the subsequent UVAP processing.  相似文献   

19.
As an important ceramic material, tungsten carbide (WC) is utilized as the typical mold in precision glass molding, which has replaced conventional grinding and polishing to provide a highly replicative process for mass manufacturing of optical glass components. Ultra-precision grinding, which is time consuming and has low reproducibility, is the only method to machine such WC molds to high profile accuracy. Although diamond turning is the most widely used machining method for fabrication of optical molds made of metals, diamond turning of WC is still considered challenging due to fast abrasive wear of the diamond tool caused by high brittleness and hardness of WC. Ultrasonic vibration cutting has been proven to be helpful in realizing ductile-mode machining of brittle materials, but its tool life is still not long enough to be utilized in practical diamond turning of optical WC molds. In the current study, a hybrid method is proposed to combine electrochemical processing of WC workpiece surface into the diamond turning process. Cutting tests on WC using poly-crystalline diamond tools were conducted to evaluate its effect on improvement of tool wear and surface quality. Validation cutting tests using single crystal diamond tools has proven that the proposed hybrid method is able to significantly reduce the diamond tool wear and improve the surface quality of machined ultra-fine grain WC workpiece compared to ultrasonic vibration cutting without electrochemical processing.  相似文献   

20.
《Ceramics International》2019,45(16):19669-19678
Dressing experiments under different conditions were carried out on a vitrified bonded microcrystal alumina abrasive wheel with a single-grit diamond dresser. The grinding performance of the as-dressed abrasive wheels was investigated. The dressing force, grinding force and the surface morphology of abrasive wheel and machined workpiece were studied to shed light on the relationship among the dressing processing vectors, morphology of abrasive wheel and the grinding performance. The results obtained show that the dressing forces increase with the increasing volume of the abrasive wheel material removed per unit time. The sensitive analysis reveals that the dressing feed speed take a greater effect than the single dressing depth on the dressing force. The self-sharpness of vitrified bonded microcrystal alumina abrasive wheel brings into some functions under certain dressing conditions, but a deep dressing depth would lead to an excessive abrasive self-sharpness, i.e. abrasive grits fall off and embed into the workpiece surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号