首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
《Ceramics International》2023,49(12):20200-20209
A variety of lanthanide ions doped bismuth titanate (Bi4Ti3O12) luminescent materials with eminent down-conversion (DC) and up-conversion (UC) luminescence performance have been fabricated via a facile sol-gel approach. The XRD, XPS, and EDX elemental mapping results confirm the phase structure of orthorhombic Bi4Ti3O12 (BTO), and the lanthanide activator ions occupy the Bi3+ lattice sites in the BTO crystal. Under UV or NIR excitation, the Eu3+, Yb3+/Ln3+ (Ln = Er, Tm, and Ho) doped Bi4Ti3O12 samples exhibit characteristic red, green, blue, and green emissions. The luminescent mechanisms of the BTO:Eu3+ and BTO:Yb3+/Ln3+ samples are discussed based on the energy level diagrams. The doping concentrations of Eu3+, Yb3+, Er3+, Tm3+, Ho3+ ions and annealing temperature and time are optimized, whose optimal values are determined to be 14, 8, 1, 0.4, 1 mol% and 800 oC, 4 h. The as-obtained LED devices fabricated by Bi4Ti3O12:Eu3+ and Yb3+/Ln3+ phosphors exhibit dazzling multicolor visible light emissions from different Ln3+ ions. The results indicate that the as-obtained Ln3+ doped BTO phosphors may be potentially utilized in LED devices and solid-state lighting. Furthermore, the Eu3+ and Er3+ co-doped BTO samples exhibit different DC and UC luminescence spectral profiles when excited at various UV, visible, or NIR wavelengths, revealing their eminent feasibility and great potential in anti-counterfeiting applications.  相似文献   

2.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

3.
《Ceramics International》2023,49(12):20505-20517
Rare earth oxyfluoride materials are a fascinating class of host matrixes for various applications. However, rapid green preparation of multifunctional rare earth oxyfluoride phosphors remains a huge challenge. In this work, we report the fast synthesis of Lu7O6F9 using ionic liquids (ILs), which enables the precursors to be obtained at 10 min. The effects of calcination temperature, reaction temperature, reaction time and fluorine source on the phase and morphology of precursors and products are elaborated and the growth mechanism is put forward. Eu3+ alone and Yb3+, Er3+ co-doped samples were prepared to investigate the down-conversion (DC) and up-conversion (UC) properties, respectively. Besides, Gd3+ ions were introduced to the Eu3+ doped products, endowing the phosphors more intense luminescence and paramagnetic properties. The proposed facile synthesis route, excellent luminescence, thermal stability and paramagnetic properties open up the way to obtain rare earth fluoride and oxyfluoride for multifunctional applications.  相似文献   

4.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

5.
A series of temperature‐stable microwave dielectric ceramics, (1?x)(Na0.5La0.5)MoO4x(Na0.5Bi0.5)MoO4 (0.0 ≤ x ≤ 1.0) were prepared by using solid‐state reaction. All specimens can be well sintered at temperature of 580°C–680°C. Sintering behavior, phase composition, microstructures, and microwave dielectric properties of the ceramics were investigated. X‐ray diffraction results indicated that tetragonal scheelite solid solution was formed. Microwave dielectric properties showed that permittivity (εr) and temperature coefficient of resonant frequency (τf) were increased gradually, while quality factor (Q × f) values were decreased, at the x value was increased. The 0.45(Na0.5La0.5)MoO4–0.55(Na0.5Bi0.5)MoO4 ceramic sintered at 640°C with a relative permittivity of 23.1, a Q × f values of 17 500 GHz (at 9 GHz) and a near zero τf value of 0.28 ppm/°C. Far‐infrared spectra (50–1000 cm?1) study showed that complex dielectric spectra were in good agreement with the measured microwave permittivity and dielectric losses.  相似文献   

6.
《Ceramics International》2022,48(11):15755-15761
In this work we detail the preparation of new luminescent Li+ and K+ doped Na2Zn3Si2O8: Er3+ up-conversion phosphors using the high-temperature solid-phase method. We investigate the phosphors phase structure, elemental distribution, up-conversion luminescence characteristics and temperature sensing properties. Our fabricated samples were found to be homogeneous and when excited using 980 nm light, they emitted wavelengths in the green and red visible wavelength bands, which correspond to two major emission bands of Er3+. Doping with Li+ and K+ increased the luminescence intensity of the Na2Zn3Si2O8: Er3+ phosphor at 661 nm by 36 and 21 times respectively. The highest relative temperature sensitivity (Sa) of the fabricated phosphor reached a value of 19.69% K?1 and the highest absolute temperature sensitivity (Sr) reached 1.20% K?1. These values are superior to other materials which utilize up-conversion by Er3+ ions as a tool for temperature sensing. We anticipate that these new phosphors will find significant application as components in optical temperature measurement systems.  相似文献   

7.
A series of Na5Y(MoO4)4-yAy:Dy3+ (A = WO42?, VO43?; y = 0–0.05) phosphors were synthesized by the combustion method. Some of the MoO42? sites were occupied by WO42? and VO43? anions, which enhanced the luminescence property of Dy3+-doped Na5Y(MoO4)4. XRD results show that the crystal structures of the samples were consistent with the standard Na5Y(MoO4)4 phase. Under excitation at 352 nm, the Na5Y(MoO4)4-yAy:Dy3+ phosphors exhibited a characteristic blue emission at 485 nm and a yellow emission at 577 nm, which originated from the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. White light can be achieved by combining these blue and yellow emissions. After replacing MoO42? with WO42? and VO43? anions in Na5Y(MoO4)4:Dy3+, the luminescence intensity of Dy3+ was significantly improved due to the crystal field effect. The results indicate that Na5Y(MoO4)3.97(WO4)0.03:Dy3+ and Na5Y(MoO4)3.97(VO4)0.03:Dy3+ phosphors have good prospects for application in n-UV-excited w-LEDs.  相似文献   

8.
《Ceramics International》2023,49(10):15320-15332
A variety of Bi3+ and/or Eu3+ doped KBaYSi2O7 phosphors with deep blue, cyan, orange-red, and white light multicolor emissions have been fabricated by a Pechini sol-gel (PSG) method. The KBaYSi2O7:Bi3+ phosphors exhibit an intense cyan emission or a unique narrow deep blue emission when excited by different wavelengths, which may bridge the cyan gap or act as a promising deep blue phosphor for white light-emitting diodes (WLEDs). The tunable multicolor emissions can be achieved by changing the Bi3+ doping concentrations. The Bi3+/Eu3+ co-doped KBaYSi2O7 phosphors display intrinsic emissions of Bi3+ and Eu3+ and an energy transfer process between Bi3+ and Eu3+ can be detected. The luminescence colors of KBaYSi2O7:Bi3+,Eu3+ regularly shift from blue, through cold and warm white, finally toward orange-red by adjusting the relative doping concentrations of Bi3+ and Eu3+. The single-phase white light-emitting material can be generated in both cold and warm white regions by simply varying the Eu3+ doping concentrations. Furthermore, three kinds of WLEDs devices are fabricated by KBaYSi2O7:Bi3+ or KBaYSi2O7:Bi3+,Eu3+ phosphors, which can exhibit dazzling white light emissions with eminent CIE coordinates, correlated color temperature, and color rendering index. The result offers direct evidence that the as-synthesized phosphors may be potentially applied in WLEDs and solid-state lighting.  相似文献   

9.
The solar spectral converters mainly involve the energy transfer between two codoped ions. Here, we report a series of Ce3+, Cr3+, Ln3+ (Ln = Yb, Nd, Er) tridoped Gd3Sc2Ga3O12 (GSGO) phosphors with improved absorption and increasing near infrared (NIR) emission. We observed the multiple energy transfer behaviors of Cr3+→Ln3+, Ce3+→Ln3+, Ce3+→Cr3+, and Ce3+→Cr3+→Ln3+ in GSGO matrix. When Ce3+ is introduced into the GSGO:Cr3+,Ln3+ phosphors, the energy transfer of Ce3+→Cr3+→Ln3+ has been realized by utilizing the energy transfer bridge of the Cr3+ ion. Consequently, GSGO:Ce3+,Cr3+,Ln3+ can absorb almost all ultraviolet and visible (UV–Vis) light and produce strong NIR light thanks to the synergistic effect of Ce3+→Cr3+→Ln3+, improving the photovoltaic conversion efficiency of c-Si solar cells. Our results show that the prepared GSGO:Ce3+,Cr3+,Ln3+ have the potential application in the solar spectral material for c-Si solar cells. Meanwhile, the strategy of multiple energy transfers gives a new way to design the spectral conversion materials with wider absorption for c-Si solar cells.  相似文献   

10.
Color-tunable up-conversion powder phosphors Zn(AlxGa1-x)2O4: Yb3+,Tm3+,Er3+ were synthesized via high temperature solid-state reaction. Also, the morphological and structural characterization, up-conversion luminescent properties were all investigated in this paper. In brief, under the excitation of a 980?nm laser, all powders have same emission peaks containing blue emission at 477?nm (attributed to 1G43H6 transition of Tm3+ ions), green emission at 526?nm and 549?nm (attributed to 2H11/24I15/2 and 4S3/24I15/2 transition of Er3+ ions respectively), red emission at about 659?nm and 694?nm (attributed to 4F9/24I15/2 transition of Er3+ ions and 3F33H6 transition of Tm3+ ions, respectively), which are not changed after the doping of Al3+ ions. However, the doping of Al3+ ions can enhance the up-conversion luminescent intensity and efficiency, while the emission color of as-prepared powder phosphors can be tunable by controlling the doping amount of Al3+ ions. Taking Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er as the cut-off value, the emissions have clear blue-shift firstly and then show obvious red-shift with the increasing doping of Al3+ ions. Stated thus, pink emission in ZnAl2O4:Yb,Tm,Er, purplish pink emission in ZnGa2O4:Yb,Tm,Er and Zn(Al0.9Ga0.1)2O4:Yb,Tm,Er, purple emission in Zn(Al0.1Ga0.9)2O4:Yb,Tm,Er and Zn(Al0.3Ga0.7)2O4:Yb,Tm,Er, purplish blue emission in Zn(Al0.7Ga0.3)2O4:Yb,Tm,Er, blue emission in Zn(Al0.5Ga0.5)2O4:Yb,Tm,Er can be observed, which confirm the potential applications of as-prepared Zn(AlxGa1-x)2O4:Yb3+,Tm3+,Er3+ powder phosphors in luminous paint, infrared detection and so on.  相似文献   

11.
Yb/Ln (Ln=Er, Tm) doped TeO2-based glasses containing CsPbBr3 perovskite quantum dots were successfully prepared via in-situ glass crystallization. The nanocomposites yield typical green downshifting luminescence attributing to CsPbBr3 exciton recombination under UV excitation, and produce Er3+ green, Er3+ red and Tm3+ blue upconversion emissions under 980 nm laser excitation. Impressively, specific Ln3+ emissions will be quenched with the precipitation of CsPbBr3 in glass, enabling to finely tune upconversion emitting color. Spectroscopic characterizations evidence that the luminescence quenching is originated from non-radiative reabsorption effect induced by the precipitation of CsPbBr3 rather than energy transfers from Ln3+ to CsPbBr3. Finally, these nanocomposites are demonstrated to exhibit superior water resistance due to the effective protecting role of dense structural glass, particularly, about 95% downshifting luminescence of CsPbBr3 and upconversion luminescence of Er3+ related to pristine ones are retained after immersing the products in water up to 30 days.  相似文献   

12.
Rare‐earth (RE) titanate pyrochlore with perovskite‐layered structure is a well‐known engineering material in applied in many field. In this work, a red‐emitting phosphor of Gd2?xNaxTi2?2xSb2xO7:Eu3+ (x = 0‐0.5) was developed via cation substitutions of (Sb5+→Ti4+) and (Na+→Gd3+) in Gd2Ti2O7. The motivation is based on the fact that the introduction of cation‐disorders has been regarded to be an effective approach for improving the luminescent efficiency and thermal stability of RE‐activated materials. All the samples were synthesized via facile solid‐state reaction method. The morphology properties were measured via SEM and EDS measurements. The structural Rietveld refinement was performed to investigate the microstructure in pyrochlore lattices. The luminescence properties of Gd2?xNaxTi2?2xSb2xO7:0.15Eu3+ (x = 0‐0.5) has a strict dependence on the cation substitution levels. The band energy of Gd2Ti2O7 is 2.9 eV with a direct transition nature. The incorporation of Sb5+ and Na+ in the lattices moves the optical absorption to a longer wavelength. The cation disorder results in significant improvements of luminescence intensity, excitation efficiency in the blue region, longer emission lifetime and thermal stability.  相似文献   

13.
《Ceramics International》2022,48(20):29991-29996
Bi-doped lead-free double perovskite Cs2Ag0.6Na0.4InCl6 phosphors have been proved to be effective for use in white LEDs. To further improve the luminescence effect of this promising material, Bi3+/Gd3+ co-doped lead-free perovskite Cs2Ag0.6Na0.4InCl6 phosphors were successfully synthesized using the oil bath method. The quantum efficiency of orange-emitting Cs2Ag0.6Na0.4InCl6:1% Bi3+ was effectively improved from 79.72% to 87.57% by co-doping Gd3+ ions. White LEDs were prepared by mixing the synthesized phosphor Cs2Ag0.40Na0.60InCl6: 1%Bi3+,10%Gd3+ and commercial blue phosphor BaMgAl10O17:Eu2+. Excellent warm white LEDs with colour coordinates (0.3464, 0.3224), colour rendering index of 93.9, and colour temperature of 4818 K were produced. The results of this study provide a meaningful reference for new lead-free halide perovskite luminescent material systems.  相似文献   

14.
《Ceramics International》2019,45(11):14249-14255
Novel single-component phosphors Ca3Sc2Si3O12:Cr3+/Ln3+ (CSS:Cr3+/Ln3+, Ln = Nd, Yb, Ce) with broadband near-infrared (NIR) emissions are synthesized. Their phase structure, photoluminescence properties and energy transfer between Cr3+ and Ln3+ ions are investigated. In the CSS host, Cr3+ ions occupy Sc3+ sites with low-field octahedral coordination, and thus show a broadband emission in 700–900 nm under the blue light excitation. Nd3+, Yb3+ and Ce3+ ions substitute Ca2+ sites in CSS, where Nd3+ and Yb3+ ions emit the NIR light in 900–1100 nm and their excitation efficiencies at ∼450 nm are greatly enhanced by utilizing the energy transfer from Cr3+ to Nd3+/Yb3+ ions. Ce3+ ions can further enhance the absorption of CSS:Cr3+/Ln3+ phosphors to the blue light, and at the same time contribute to the visible emission in 480–650 nm. Furthermore, CSS:Cr3+/Ln3+ phosphors show good thermal stability, and approximately 79% of the initial emission intensity is sustained at 150 °C. A phosphor-converted LED (pc-LED) prototype is fabricated by integrating the as-prepared phosphor CSS:Cr3+/Ln3+ and the commercial phosphor CaAlSiN3:Eu2+ with the blue LED chip, showing a super broadband emission ranging from 450 to 1100 nm. This finding shows the potential application of CSS:Cr3+/Ln3+ phosphors in broadband NIR pc-LEDs or super broadband LED sources with visible to NIR light output.  相似文献   

15.
Ln0.97VO4:Bi0.033+ and (Ln10.5, Ln20.5)0.97VO4:Bi0.033+ (where Ln=La, Gd and Y) down conversion (DC) phosphors have been synthesized by a novel co-precipitation technique followed by heat-treatment. The influence of lanthanide host composition on crystal structure, luminescence and pertinent optical properties have been investigated by various spectroscopic techniques: XRD, SEM, FT-IR and PL. The produced phosphors have exhibited an intense greenish-yellow emission, upon UV-irradiation. A broad band excitation (280–350 nm) ascribed to 1S03P1 and an intense broad greenish-yellow emission band (400–700 nm) attributed to 3P11S0 transition, owing to Bi3+ ions have been observed. PL spectra revealed that the phosphors with Gd – containing host has exhibited a better luminescence among the others. The luminescence intensity sequence in descending order was as follows: GdVO4→(Gd, Y)VO4→(La, Gd)VO4→(La, Y)VO4→YVO4→LaVO4: Bi3+. These phosphors can efficiently convert the UV-photons in a broad range from 280–350 nm of feckless UV-rays into the absorbable visible emission for c-Si solar cells, based on the spectral matching phenomena. In view of the better fluorescence and pertinent optical properties, the phosphor with composition Gd0.97VO4: Bi0.033+ is a suggestible sought UV-absorbing spectral converter, in its thin transparent DC form for c-Si solar cells for better harvesting the solar energy.  相似文献   

16.
《Ceramics International》2023,49(12):19966-19973
Photon-mode ultracapacity storage media made of inorganic photochromic luminescent materials are highly anticipated, and widely explored in the development of new optical data storage (ODS) technologies. Despite some recent breakthroughs, the optical storage capacity of defect-rich photochromics is still limited to low luminescent readout abilities. Herein, oxygen vacancy rich and bismuth doped K0.5Na0.5NbO3:Eu3+ ceramics were designed, and synergistically boost the luminescence intensity, photochromic efficiency, and luminescent modulation properties, then effectively improving the luminescence readout abilities. The luminescence modulation ratio reaches up to 97.5% from 68.4% with the increase of oxygen vacancy concentrations due to hetero-valent bismuth doping, accompanied by high photochromic efficiency (35.7% from 21.9%) and excellent reproducibility. These results demonstrate that the synergistic engineering of oxygen vacancy and doping is a promising strategy for obtaining high-performance photochromic materials.  相似文献   

17.
《Ceramics International》2023,49(10):14981-14988
Rare earth ions doped ferroelectrics have attracted wide attentions due to their multifunction characteristics with both ferroelectric/piezoelectric properties and intriguing photoluminescence performance, which show great prospects for future multifunctional devices. In this work, a novel rare earth Er3+ ion modified potassium-sodium niobate (KNN) based ceramics were elaborately designed and prepared by the conventional solid-state reaction. The microstructure, phase structure, electric properties and photoluminescence performance of the Er3+ ion modified KNN-based ceramics were systematically investigated. Enhanced piezoelectricity (a considerable d33 of exceeding 300 pC/N and a large d33* up to 500 p.m./V) was realized through optimizing the substitution of BaZrO3 by (Er0.5,Na0.5)ZrO3. Both down-conversion and up-conversion photoluminescence emissions were detected in the optimal composition. The temperature-dependent upconversion emissions of the optimal Er3+ modified ceramic sample in the temperature range of 303–573K were verified to be applicable for non-contact optical temperature sensing with a maximum sensitivity Sa of 0.0028 K-1 and a peak relative sensitivity Sr of 0.96% K−1. Moreover, low-temperature sensing performance with a maximum Sr of 16.7% K−1 in the temperature range of 80–280K was also presented based on the temperature-dependent down-conversion emissions. With both decent electrical properties and intriguing photoluminescence performance, the Er3+-modified KNN-based ferroelectrics exhibit good application potential in the future multifunctional optoelectronic devices.  相似文献   

18.
Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors were synthesized through high temperature solid state method. Under 980 nm laser excitation, the Lu2W2.5Mo0.5O12: Er3+/Yb3+ compounds show thermal enhancement of up-conversion luminescence (UCL), which is attributed to the lattice contraction and distortion from negative thermal expansion (NTE) of Lu2W2.5Mo0.5O12 host enhancing the energy transfer of Yb3+ to Er3+, eliminating the energy transfer of Er3+ to Er3+ through Er3+ single-doped Lu2W2.5Mo0.5O12 phosphors without thermal enhancement of UCL. The green luminescence intensities at 693 K of the Lu1.98-xW2.5Mo0.5O12: 0.02Er3+, xYb3+ (x = 0.2, 0.3, 0.4) samples are 4.6, 4.3 and 7.0 times as that of 302 K, respectively. And through fluorescence intensity ratio (FIR) technique, the corresponding maximum absolute sensitivities are 0.00741, 0.00744 and 0.00723, respectively. The green monochromaticity of UCL spectra in Er3+/Yb3+ co-doped samples increase with the increasing of temperature, and the possible UCL mechanism with temperature was discussed. The results indicate that the Lu2W2.5Mo0.5O12: Er3+/Yb3+ phosphors can be applied at a high temperature as optical thermometer with a good green monochromaticity.  相似文献   

19.
《Ceramics International》2023,49(16):26786-26793
Current optical temperature measurements are confined to materials with high sensitivity, while probes with fluorescence intensity ratio (FIR) sensitivity above 12% K−1 still confront severe challenges. Therefore, we propose a novel strategy to obtain temperatures in one step from the temperature-dependent emission spectra by establishing a chemometrics model instead of calculating FIR values to improve temperature measurement accuracy of materials with a low FIR sensitivity. Here, Er3+-doped Na0.5Gd0.5TiO3 with low sensitivity and the monotonic variation of FIR is used as a temperature sensing material. The temperature-dependent spectra are preprocessed by the moving average filter method, and the useful information is extracted from the preprocessed spectra by the synergy interval partial least squares (siPLS) algorithm. The extracted spectra are then combined with the partial least squares regression (PLSR), the principal component regression (PCR), the multiple linear regression (MLR), and the support vector machine regression (SVM) respectively to build chemometrics models. The errors between the predicted and the actual temperatures of different models are evaluated to verify the feasibility of the proposed strategy and to select the optimal temperature measurement model for Na0.5Gd0.5TiO3: Er3+. The results show small errors and high correlation coefficients over 0.98 between the predicted and the actual temperatures of all models, indicating the applicability of the chemometrics model strategy in optical thermometry. Finally, the best model (a combination of siPLS-PCR + SVM) and the periodic testing of FIR with temperature may make Na0.5Gd0.5TiO3: Er3+ a candidate for optical thermometer with rapidity, durability and accuracy.  相似文献   

20.
《Ceramics International》2016,42(8):9899-9905
Pr3+/Er3+-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics have been fabricated at a low sintering temperature of 960°C using a sintering aid of Li2CO3. The effects of energy transfer between Pr3+and Er3+on their photoluminescence properties have been investigated. Our results reveal that the down-conversion emissions of Pr3+are weakened and the lifetimes are shortened by the co-doping of Er3+. As a result, when both Pr3+and Er3+are excited simultaneously, with increasing the concentration of Er3+, the green emissions from Er3+increase but the red emissions from Pr3+decrease. Moreover, the emission color of the ceramics can be reversibly changed between red, yellow and yellowish green by using excitation sources of different wavelengths. Strong up-conversion green emissions with short lifetimes arisen from Er3+have also been observed for the ceramics under the excitation of 980 nm. Owing to the Li2CO3 sintering aid, the low-temperature sintered ceramics also exhibit reasonably good ferroelectric and piezoelectric properties, and hence should be promising for multifunctional applications such as electro-optical coupling devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号