首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: The aim was to determine whether, and by what mechanism(s), a novel inotropic agent 5-methyl-6-phenyl-1,3,5,6-tetrahydro-3, 6-methano-1,5-benzodiazocine-2,4-dione (BA 41899) and its enantiomers directly alter the Ca2+ sensitivity of cardiac myofilaments. METHODS: Porcine ventricular trabeculae were permeabilised with Triton X-100. The relationship between force and pCa (-log[Ca2+]) was determined in the presence and absence of ATP. Troponin I was extracted, using vanadate, to produce unregulated maximally activated myofilaments. Force and actomyosin ATPase activity were measured simultaneously to determine tension cost (ATPase activity/tension). The effects of the (+) enantiomer (CGP 48506) on the twitch of intact muscle were demonstrated using rat papillary muscle. RESULTS: 100 microM BA 41899 had a pronounced Ca2+ sensitising effect on force production by porcine skinned cardiac fibres, increasing the pCa required for 50% maximal activation by 0.64 units, while suppressing maximum force by 18.3%. Resting tension was unaffected. These actions were primarily caused by CGP 48506 and were concentration dependent. At concentrations less than 100 microM, CGP 48506 also increased twitch amplitude in intact papillary muscles with no effect on resting tension, whereas 100 microM CGP 48506 increased resting force due to a slowing of relaxation. 100 microM CGP 48506 potentiated Ca(2+)-independent rigor tension in skinned trabeculae, indicating a Ca2+ sensitising mechanism unrelated to Ca2+ binding to troponin C. Tension cost was unaffected by 100 microM CGP 48506 over the entire range of activating Ca2+ concentrations. Suppression of maximum force by CGP 48506 was independent of both Ca2+ concentration and the regulatory troponin complex. CONCLUSIONS: Both the increase in Ca2+ sensitivity during submaximal activation and the depression of maximum force which are induced by CGP 48506 in skinned trabeculae occur at least partly through Ca(2+)-independent mechanisms.  相似文献   

2.
2-Hydroxycarbazole was shown to induce Ca2+ release from skeletal muscle and cardiac muscle sarcoplasmic reticulum at concentrations between 100-500 microM. This release was blocked by both 1 mM tetracaine and 30 microM ruthenium red which inhibit the ryanodine receptor or by pre-treatment with 10 mM caffeine which depletes the ryanodine receptor-containing Ca2+ stores. This, in addition to the fact that 2-hydroxycarbazole has little effect on Ca2+ ATPase activity, indicates that it activates Ca2+ release through the ryanodine receptor. The apparent EC50 value for release from both skeletal muscle and cardiac muscle sarcoplasmic reticulum was approximately 200 microM and maximal release occurred at 400-500 microM, making it approximately 20 times more potent than caffeine. The dose-dependency in the extent of Ca2+ release induced by 2-hydroxycarbazole was also apparently highly cooperative for both preparations. That 2-hydroxycarbazole was able to mobilize Ca2+ from non-muscle cell microsomes and in intact TM4 cells (which contain ryanodine receptors), makes this compound a more potent and commercially available alternative to caffeine in studying the role of this intracellular Ca2+ channel in a variety of systems.  相似文献   

3.
The relationship between adenosine triphosphate (ATP) turnover and muscle performance was investigated in skinned cardiac trabeculae of the rat at different [Ca2+] and two different sarcomere lengths (1.8 microns and 2.2 microns) at 20 degrees C. ATP turnover was measured photometrically by enzymatic coupling of the regeneration of ATP to the oxidation of reduced nicotinamide adenine dinucleotide. The trabeculae were studied under isometric conditions and when the length was altered repetitively at a frequency of 23 Hz, with a square wave, by 5% of the initial length. The isometric ATPase activity amounted to 0.48 mM/s. Isometric ATP turnover and force were proportional at different [Ca2+]. During length changes at maximal activation (pCa 4.27) and 2.2 microns sarcomere length, ATPase activity increased to up to 162% whereas at low [Ca2+], ATPase activity decreased with respect to the isometric value at that pCa. At pCa 5.5, ATPase activity was reduced to 33%. These results indicate that during the length changes the apparent cross-bridge detachment rate is increased and the apparent attachment rate is decreased. The findings suggest that the Fenn effect, i.e. the increase in energy turnover above the isometric value during shortening, is present in cardiac trabeculae at high levels of activation, but is absent or reversed at lower levels of activity.  相似文献   

4.
The Ca2+ uptake by the sarcoplasmic reticulum (SR) can be affected by direct modulation of the Ca2+ pump or by removing the inhibitory effect of dephosphorylated phospholamban. The effect of these mechanisms was assessed using ellagic acid and 1-(3,4-dimethoxyphenyl)-3-dodecanone. Both compounds (30 micromol/l) enhanced SR-Ca2+ uptake in rabbit cardiomyocytes by 65.3 +/- 13% and 44.3 +/- 6.7% for 1-(3,4-dimethoxyphenyl)-3-dodecanone and ellagic acid, respectively (at pCa 6.2). A similar effect was observed in cardiac SR microsomes (59.5 +/- 7.4% and 45.1 +/- 6.7) with 30 micromol/l 1-(3,4-dimethodoxyphenyl)-3-dodecanone and ellagic acid, respectively. 1-(3,4-Dimethoxyphenyl)-3-dodecanone increased Ca2+ storage by cardiac SR microsomes mainly at high [Ca2+] with a 57% increase of Vmax, whereas ellagic acid increased Vmax to a smaller extent (22%) and stimulated Ca2+ uptake at lower [Ca2+] with a leftward-shift of the pCa/ATPase relationship by pCa 0.24. Ellagic acid also differed from 1-(3,4-dimethoxylphenyl)-3-dodecanone in that it produced a Ca2+ sensitizing effect only in cardiac SR microsomes (by pCa 0.3) whereas 1-(3,4-dimethoxyphenyl)-3-dodecanone stimulated the ATPase, at saturating Ca2+, in both cardiac and skeletal muscle SR vesicles. It is suggested that 1-(3,4-dimethoxyphenyl)-3-dodecanone stimulates directly the Ca2+-ATPase activity, in contrast to ellagic acid which enhances the cardiac SR-Ca2+ uptake by interacting with phospholamban, as confirmed by the lack of additive effect between ellagic acid and monoclonal antibodies raised against phospholamban. 1-(3,4-dimethoxyphenyl)-3-dodecanone and ellagic acid constitute attractive pharmacological tools to investigate the functional consequences of enhancing SR Ca2+, uptake by affecting different mechanisms.  相似文献   

5.
The phosphatase inhibitor okadaic acid (OA) was used to study the relationship between [Ca2+], rates of phosphorylation/dephosphorylation and the mechanical properties of smooth muscle fibres. Force/velocity relationships were determined with the isotonic quick release technique in chemically skinned guinea-pig taenia coli muscles at 22 degrees C. In the maximally thiophosphorylated muscle neither OA (10 microM) nor Ca2+ (increase from pCa 9.0 to pCa 4.5) influenced the force-velocity relationship. When the degree of activation was altered by varying [Ca2+] in the presence of 0.5 microM calmodulin, both force and the maximal shortening velocity (Vmax) were altered. At pCa 5.75, at which force was about 35% of the maximal at pCa 4.5, Vmax was 55% of the maximal value. When OA was introduced into fibres at pCa 6.0, force was increased from less than 5% to 100% of the maximal force obtained in pCa 4.5. The relationship between the degree of myosin light chain phosphorylation and force was similar in the two types of activation; varied [OA] at constant [Ca2+] and at varied [Ca2+]. The relation between force and Vmax when the degree of activation was altered with OA was almost identical to that obtained with varied [Ca2+]. The results show that Ca2+ and OA do not influence force or Vmax in the maximally phosphorylated state and suggest that the level of myosin light chain phosphorylation is the major factor determining Vmax. The finding that the relationship between force and Vmax was similar when activation was altered with OA and Ca2+ suggests, however, that alterations in the absolute rates of phosphorylation and dephosphorylation at a constant phosphorylation level do not influence the mechanical properties of the skinned smooth muscle fibres.  相似文献   

6.
The Ca2+ sensitivity of cardiac myofibrillar force production can be decreased by acidosis or inorganic phosphate (P(i)) and increased by caffeine. To investigate whether the source of tissue influences the potency of these agents, we compared the actions of acidosis (change of pH from 7.0 to 6.2), P(i) and caffeine (both 20 mM) on force production of skinned cardiac muscles from adult ventricle, adult atrium and neonate ventricle of the rat. Maximum Ca(2+)-activated force was reduced by all three interventions and the responses of the different muscle types to a given intervention were similar. Acidosis reduced myofibrillar Ca2+ sensitivity by 1.09 and 1.04 pCa units in adult ventricle and atrium, respectively, and P(i) reduced it by 0.19 and 0.22 pCa units. However, each effect was only one-third as great in the neonate ventricle, which showed falls of 0.33 pCa units for acidosis and 0.06 for P(i). In contrast, caffeine raised the Ca2+ sensitivity by the same amount (approximately 0.4 pCa units) in all three muscle types. The differential effect between adult and neonate seen with both acidosis and P(i) suggests some similarity in the mechanisms by which these factors decrease Ca2+ sensitivity. In contrast, the equal effects of caffeine on neonate and adult suggests that caffeine acts by a completely different mechanism. The lower pH- and P(i)-sensitivity of the neonatal ventricle can help to explain why neonatal and adult myocardium exhibit differential force responses to ischaemia (or hypoxia alone).  相似文献   

7.
Single canine cardiac ryanodine receptor channels were incorporated into planar lipid bilayers. Single-channel currents were sampled at 1-5 kHz and filtered at 0.2-1.0 kHz. Channel incorporations were obtained in symmetrical solutions (20 mM HEPES-Tris, pH 7.4, and pCa 5). Unitary Ca2+ currents were monitored when 2-30 mM Ca2+ was added to the lumenal side of the channel. The relationship between the amplitude of unitary Ca2+ current (at 0 mV holding potential) and lumenal [Ca2+] was hyperbolic and saturated at approximately 4 pA. This relationship was then defined in the presence of different symmetrical CsCH3SO3 concentrations (5, 50, and 150 mM). Under these conditions, unitary current amplitude was 1.2 +/- 0.1, 0.65 +/- 0.1, and 0.35 +/- 0.1 pA in 2 mM lumenal Ca2+; and 3.3 +/- 0.4, 2.4 +/- 0. 2, and 1.63 +/- 0.2 pA in 10 mM lumenal Ca2+ (n > 6). Unitary Ca2+ current was also defined in the presence of symmetrical [Mg2+] (1 mM) and low [Cs+] (5 mM). Under these conditions, unitary Ca2+ current in 2 and 10 mM lumenal Ca2+ was 0.66 +/- 0.1 and 1.52 +/- 0.06 pA, respectively. In the presence of higher symmetrical [Cs+] (50 mM), Mg2+ (1 mM), and lumenal [Ca2+] (10 mM), unitary Ca2+ current exhibited an amplitude of 0.9 +/- 0.2 pA (n = 3). This result indicates that the actions of Cs+ and Mg2+ on unitary Ca2+ current were additive. These data demonstrate that physiological levels of monovalent cation and Mg2+ effectively compete with Ca2+ as charge carrier in cardiac ryanodine receptor channels. If lumenal free Ca2+ is 2 mM, then our results indicate that unitary Ca2+ current under physiological conditions should be <0.6 pA.  相似文献   

8.
Atrial and ventricular myocytes 200 to 300 microm long containing one to five myofibrils are isolated from frog hearts. After a cell is caught and held between two suction micropipettes the surface membrane is destroyed by briefly jetting relaxing solution containing 0.05% Triton X-100 on it from a third micropipette. Jetting buffered Ca2+ from other pipettes produces sustained contractions that relax completely on cessation. The pCa/force relationship is determined at 20 degrees C by perfusing a closely spaced sequence of pCa concentrations (pCa = -log[Ca2+]) past the skinned myocyte. At each step in the pCa series quick release of the myocyte length defines the tension baseline and quick restretch allows the kinetics of the return to steady tension to be observed. The pCa/force data fit to the Hill equation for atrial and ventricular myocytes yield, respectively, a pK (curve midpoint) of 5.86 +/- 0.03 (mean +/- SE.; n = 7) and 5.87 +/- 0.02 (n = 18) and an nH (slope) of 4.3 +/- 0.34 and 5.1 +/- 0.35. These slopes are about double those reported previously, suggesting that the cooperativity of Ca2+ activation in frog cardiac myofibrils is as strong as in fast skeletal muscle. The shape of the pCa/force relationship differs from that usually reported for skeletal muscle in that it closely follows the ideal fitted Hill plot with a single slope while that of skeletal muscle appears steeper in the lower than in the upper half. The rate of tension redevelopment following release restretch protocol increases with Ca2+ >10-fold and continues to rise after Ca2+ activated tension saturates. This finding provides support for a strong kinetic mechanism of force regulation by Ca2+ in frog cardiac muscle, at variance with previous reports on mammalian heart muscle. The maximum rate of tension redevelopment following restretch is approximately twofold faster for atrial than for ventricular myocytes, in accord with the idea that the intrinsic speed of the contractile proteins is faster in atrial than in ventricular myocardium.  相似文献   

9.
Tonic rabbit femoral artery and phasic rabbit ileum smooth muscles permeabilized with Triton X-100 were activated either by increasing [Ca2+] from pCa > 8.0 to pCa 6.0 (calcium-ascending protocol) or contracted at pCa 6.0 before lowering [Ca2+] (calcium-descending protocol). The effects of, respectively, high [MgATP]/low [MgADP] [10 mM MgATP + creatine phosphate (CP) + creatine kinase (CK)] or low [MgATP]/[MgADP] (2 mM MgATP, 0 CP, 0 CK) on the "force-[Ca]" relationships were determined. In femoral artery at low, but not at high, [MgATP]/[MgADP] the force and the ratio of stiffness/force at pCa 7.2 were significantly higher under the calcium-descending than calcium-ascending protocols (54% vs. 3% of Po, the force at pCa 6.0) (force hysteresis); the levels of regulatory myosin light chain (MLC20) phosphorylation (9 +/- 2% vs. 10 +/- 2%) and the velocities of unloaded shortening V0 (0.02 +/- 0.004 l/s with both protocols) were not significantly different. No significant force hysteresis was detected in rabbit ileum under either of these experimental conditions. [MgADP], measured in extracts of permeabilized femoral artery strips by two methods, was 130-140 microM during maintained force under the calcium-descending protocol. Exogenous CP (10 mM) applied during the descending protocol reduced endogenous [MgADP] to 46 +/- 10 microM and abolished force hysteresis: residual force at low [Ca2+] was 17 +/- 5% of maximal force. We conclude that the proportion of force-generating nonphosphorylated (AMdp) relative to phosphorylated cross-bridges is higher on the Ca2+-descending than on the Ca2+-ascending force curve in tonic smooth muscle, that this population of positively strained dephosphorylated cross-bridges has a high affinity for MgADP, and that the dephosphorylated AMdp . MgADP state makes a significant contribution to force maintenance at low levels of MLC20 phosphorylation.  相似文献   

10.
Phencyclidine hydrochloride (PCP) also known as Angel Dust is a very potent psychotomimetic drug of abuse. Besides its central nervous system (CNS) effects PCP produces a number of adverse effects in a variety of tissues including the cardiovascular system. Since PCP is known to alter the cellular calcium homeostasis the present studies were initiated to determine the changes in cardiac Ca2+ ATPase activity in rats treated with PCP. For in vitro studies the cardiac sarcoplasmic reticulum (SR) fractions prepared from normal rats were incubated with 25, 50 and 100 microM PCP and the enzyme activities were estimated. Whereas, for in vivo studies the cardiac SR fractions prepared from rats treated with PCP (10 mg/kg body wt. single dose, intra-peritoneally (i.p.)) and sacrificed at different time intervals were used. PCP reduced the Ca2+ ATPase activity significantly both in vitro and in vivo. A 50% inhibition of the enzyme activity was obtained with 100 microM PCP in vitro. A significant reduction of SR Ca2+ ATPase was also evident as early as 1 h after treatment of rats with PCP. The reduction of Ca2+ ATPase activity in SR was irreversible even at 12 h after treatment. The in vitro kinetic studies revealed that PCP was found to be a competitive inhibitor of Ca2+ ATPase with respect to the substrate, ATP, and non-competitive with respect to Ca2+ activation. These results indicate that PCP alters the myocardial Ca2+ homeostasis by inhibiting the Ca2+ ATPase in cardiac SR in rats. Inhibition of SR Ca2+ ATPase may result in the impairment of contraction and relaxation coupling processes in the myocardium.  相似文献   

11.
Reactivity of aortic and carotid strip from control; hypertensive; hypercholesterolemic; and hypertensive/hypercholesterolemic rabbits were studied. Maximal stress was less in strips from hypertensive/hypercholesterolemic animals. Norepinephrine sensitivity was increased in the carotid artery from hypertensive/hypercholesterolemic animals (EC50: 0.11 microM; 0.35 microM control). CaCl2 sensitivity during norepinephrine-induced contractions was enhanced by hypertension and hypercholesterolemia (carotid EC50: 0.10 mM; 0.38 mM control; aorta EC50: 0.12 mM; 0.82 mM control). Similar results were obtained during membrane depolarization. 5-hydroxytryptamine sensitivity (EC50: 0.15 microM carotid; 0.18 microM aorta) was decreased during hypertension (EC50: 0.51 microM carotid; 1.13 microM aorta) and by hypercholesterolemia (EC50: 1.76 microM carotid; 1.53 microM aorta). Our results support the hypothesis that hypertension and hypercholesterolemia increase vascular sensitivity by increasing Ca2+ permeability. Our results also suggest that hypertension and hypercholesterolemia selectively decrease 5-hydroxytryptamine-induced contractions.  相似文献   

12.
The sarcoplasmic reticulum Ca-ATPase is fully activated when approximately 1 microM [Ca2+] saturates the two transport sites; higher [Ca] inhibits the ATPase by competition of Ca-ATP with Mg-ATP as substrates. Here we describe a novel effect of EGTA and other chelators, raising the possibility of an additional activating effect of Ca in the sub- or low microM range. Sarcoplasmic reticulum membranes were isolated from rabbit skeletal muscles. The ATPase activity was measured after incubation at 37 degreesC in 3 mM ATP, 3 mM MgCl2, 50 mM MOPS-Tris (pH 7.2), 100 mM KCl, and variable CaCl2, EGTA and calcimycin. In the absence of added EGTA and Ca the ATPase activity is high due to contaminant Ca. The determination of the ATPase activity in the presence of increasing amounts of EGTA, without added Ca, yields a decreasing sigmoidal function. Ki ranged between 20 and 100 microM, depending on the enzyme concentration. Pi production is linear with time for several [EGTA] yielding suboptimal ATPase activities, which are inhibited by thapsigargin. These suboptimal Ca-ATPase activities are inhibited by preincubation of the enzyme in EGTA, at pH 7.2. This effect increases upon increasing EGTA concentration and preincubation time. The inhibitory effect of the previous exposure of the enzyme to EGTA is partially but significantly reverted by increasing [Ca2+] during incubations. Calcimycin and EDTA have similar effects as EGTA when added in preincubations. The effect of calcimycin is fully reverted by optimal [Ca2+] in incubations. The effects of EGTA, EDTA and calcimycin in preincubation are not additive. The results suggest that an additional calcium, lost during preincubations from a site with affinity near 1 microM, is necessary for full activation of the ATPase.  相似文献   

13.
To address controversies concerning the effect of beta-adrenergic stimulation on the rate of cross-bridge cycling in cardiac muscle, we measured ca(2+)-induced isometric tension development, unloaded shortening velocity (Vmax) and ATPase activity of demembranated (Triton X-100 skinned) rat right ventricular trabeculae before and after treatment with the catalytic subunit of protein kinase A (PKA), which is known to mimic the action of beta-adrenergic agonists in demembranated preparations. PKA treatment (1 U/microliter, 40 min) shifted the pCa-tension relation to the right from 5.41 to 5.26 at pCa50 (the [Ca2+] required for half maximal steady state tension) without changing the steepness of the pCa-tension relation and the maximum Ca(2+)-activated tension; Vmax, as determined by the slack test, was increased for a given pCa value, despite the reduced level of isometric tension. PKA treatment also shifted the pCa-ATPase activity to the right slightly from 5.47 to 5.40 at pCa50 (the [Ca2+] required for half maximal ATPase activity), but increased the ATPase activity during a given level of steady isometric tension generation, resulting in a 33% increase of the tension cost (ATPase activity/tension). All the results obtained strongly suggest that, in rat right ventricular trabeculae, beta-adrenergic stimulation may increase the rate of cross-bridge cycling by increasing the rate of cross-bridge detachment from actin through a PKA-mediated mechanism, although PKA reduces the Ca(2+)-sensitivity of the contractile system.  相似文献   

14.
1. In smooth muscles isolated from the guinea-pig trachea, the effects of dihydropyridines, nifedipine and nicardipine on contractions produced by carbachol (Cch) were studied in normal (6 mM) and excess K+ concentration (60 mM). The tonic contraction produced by 1 microM Cch was highly dependent on the external Ca2+ concentration ([Ca2+]0) and was not significantly affected by cyclopiazonic acid or thapsigargin, Ca2+ uptake inhibitor. 2. [Ca2+]0-tension curves were steeper in the presence of 1 microM Cch (the Hill coefficient: 2.5) than in the presence of 60 mM K+ (Hill coefficient: 1.6) and their ED50 of Ca2+ was 0.16 and 0.39 mM, respectively. An increase of K+ to 60 mM in the presence of 1 microM Cch shifted the curve to the left roughly in parallel (ED50: 0.12 mM, Hill coefficient: 2.3). 3. [Ca2+]0-tension curve in the presence of 1 microM Cch was shifted to the right in parallel by nifedipine (1 microM). This was markedly potentiated by 60 mM K+ (the increase in ED50 of Ca2+ being 3 times at 6 mM and 15 times at 60 mM K+). No tension was evoked by Ca2+ up to 2.5 mM in 60 mM K+ solution containing 1 microM nifedipine but no Cch. 4. In the absence of nifedipine, Cch-induced contractions were potentiated by 60 mM K+, whereas in the presence of nifedipine, Cch-induced contractions were markedly inhibited by 60 mM K+. These mechanical changes were accompanied by an increase or a decrease in intracellular Ca2+. 5. A hypothesis is presented to explain the results which suggests that the kinetics of Ca2+ influx though a single type of pathway is modulated by membrane potential and receptor activation and that the susceptibility of the pathway to dihydropyridine blockade is closely related to the Ca2+ influx kinetics with receptor activation reducing and membrane depolarization increasing the susceptibility.  相似文献   

15.
Pimobendan is a new class of inotropic drug that augments Ca2+ sensitivity and inhibits phosphodiesterase (PDE) activity in cardiomyocytes. To examine the insulinotropic effect of pimobendan in pancreatic beta-cells, which have an intracellular signaling mechanism similar to that of cardiomyocytes, we measured insulin release from rat isolated islets of Langerhans. Pimobendan augmented glucose-induced insulin release in a dose-dependent manner, but did not increase cAMP content in pancreatic islets, indicating that the PDE inhibitory effects may not be important in beta-cells. This agent increased the intracellular Ca2+ concentration ([Ca2+]i) in the presence of 30 mM K+, 16.7 mM glucose, and 200 microM diazoxide, but failed to enhance the 30 mM K+-evoked [Ca2+]i rise in the presence of 3.3 mM glucose. Insulin release evoked by 30 mM K+ in 3.3 mM glucose was augmented. Then, the direct effects of pimobendan on the Ca2+-sensitive exocytotic apparatus were examined using electrically permeabilized islets in which [Ca2+]i can be manipulated. Pimobendan (50 microM) significantly augmented insulin release at 0.32 microM Ca2+, and a lower threshold for Ca2+-induced insulin release was apparent in pimobendan-treated islets. Moreover, 1 microM KN93 (Ca2+/calmodulin-dependent protein kinase II inhibitor) significantly suppressed this augmentation. Pimobendan, therefore, enhances insulin release by directly sensitizing the intracellular Ca2+-sensitive exocytotic mechanism distal to the [Ca2+]i rise. In addition, Ca2+/calmodulin-dependent protein kinase II activation may at least in part be involved in this Ca2+ sensitization for exocytosis of insulin secretory granules.  相似文献   

16.
A Ca(2+)-activated Cl- conductance in rat submandibular acinar cells was identified and characterized using whole-cell patch-clamp technique. When the cells were dialyzed with Cs-glutamate-rich pipette solutions containing 2 mM ATP and 1 microM free Ca2+ and bathed in N-methyl-D-glucamine chloride (NMDG-Cl) or Choline-Cl-rich solutions, they mainly exhibited slowly activating currents. Dialysis of the cells with pipette solutions containing 300 nM or less than 1 nM free Ca2+ strongly reduced the Cl- currents, indicating the currents were Ca(2+)-dependent. Relaxation analysis of the "on" currents of slowly activating currents suggested that the channels were voltage-dependent. The anion permeability sequence of the Cl- channels was: NO3- (2.00) > I- (1.85) > or = Br- (1.69) > Cl- (1.00) > bicarbonate (0.77) > or = acetate (0.70) > propionate (0.41) > > glutamate (0.09). When the ATP concentration in the pipette solutions was increased from 0 to 10 mM, the Ca(2+)-dependency of the Cl- current amplitude shifted to lower free Ca2+ concentrations by about two orders of magnitude. Cells dialyzed with a pipette solution (pCa = 6) containing ATP-gamma S (2 mM) exhibited currents of similar magnitude to those observed with the solution containing ATP (2 mM). The addition of the calmodulin inhibitors trifluoperazine (100 microM) or calmidazolium (25 microM) to the bath solution and the inclusion of KN-62 (1 microM), a specific inhibitor of calmodulin kinase, or staurosporin (10 nM), an inhibitor of protein kinase C to the pipette solution had little, if any, effect on the Ca(2+)-activated Cl- currents. This suggests that Ca2+/Calmodulin or calmodulin kinase II and protein kinase C are not involved in Ca(2+)-activated Cl- currents. The outward Cl- currents at +69 mV were inhibited by NPPB (100 microM), IAA-94 (100 microM), DIDS (0.03-1 mM), 9-AC (300 microM and 1 mM) and DPC (1 mM), whereas the inward currents at -101 mV were not. These results demonstrate the presence of a bicarbonate- and weak acid-permeable Cl- conductance controlled by cytosolic Ca2+ and ATP levels in rat submandibular acinar cells.  相似文献   

17.
We have exploited solvent perturbation to probe the coupling of Ca2+ and rigor activation of the ATPase of myofibrils from rabbit psoas. Three techniques were used: overall myofibrillar ATPases by the rapid-flow quench method; kinetics of the interaction of ATP with myofibrils by fluorescence stopped-flow; and myofibrillar shortening by optical microscopy. Because of its extensive use with muscle systems, ranging from myosin subfragment-1 to muscle fibres, we chose 40% ethylene glycol as the relaxing agent. At 4 degrees C, the glycol had little effect on the myofibrillar ATPase at low [Ca2+], but at high [Ca2+] the activity was reduced 50-fold, close to the level found under relaxing conditions, and there was no shortening. However, the ATPase of chemically cross-linked myofibrils (permanently activated even without Ca2+) was reduced only 3-4-fold. The lesser reduction of the ATPase of permanently activated myofibrils was also observed in single turnover experiments in which activation occurs by a few heads in the rigor state activating the remaining heads. The addition of ADP, which also promotes strong head-thin filament interactions, also activated the ATPase but only in the presence of Ca2+. Further experiments revealed that in 40% ethylene glycol, Ca2+ does initiate shortening but only with the aid of strong interactions and at temperatures above 15 degrees C. This confirms that in the organized and intact myofibril, Ca2+ and rigor activation are coupled, as proposed previously for regulated actomyosin subfragment-1.  相似文献   

18.
1. Dithiothreitol (DTT), at 50-100 mM, induced a phasic reversible contraction of frog skeletal muscle. 2. Exposure of single fibers to nifedipine (20 microM), an L-type Ca2+ antagonist, blocked the twitch and tetanus tensions but never affected the DTT-induced contraction. 3. DTT also produced a phasic contraction in fibers where voltage sensors were inactivated in the presence of high K+ concentration (190 mM). 4. A fiber was mechanically skinned after observation of DTT-induced contraction. The skinned fiber contracted in response to a DTT concentration similar to that required to produce contraction in intact fibers before skinning. 5. In skinned fibers, DTT, at 100 or 200 mM, inhibited the accumulation of Ca2+ by SR, but not Ca2+ ATPase activity. 6. These results suggest that a high concentration of DTT triggers Ca2+ efflux from the SR through action on the Ca2+ release channel and/or closely associated proteins, such as triadin and FK-506 binding protein.  相似文献   

19.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Several studies have shown that substitution of cardiac troponin C into fast skeletal muscle causes a marked reduction in cooperativity of Ca(2+)-activation of both myofibrillar ATPase and tension development. To clarify the underlying mechanisms, in the present study, Ca2+ binding to cardiac troponin C inserted into fast skeletal myofibrils was measured. Two classes of binding sites with different affinities (classes 1 and 2) were clearly identified, which were equivalent stoichiometrically to the two high-affinity sites (sites III and IV) and a single low-affinity site (site II) of troponin C, respectively. Ca2+ binding to class-2 sites and Ca(2+)-activation of myofibrillar ATPase occurred in roughly the same Ca2+ concentration range, indicating that site II is responsible for Ca2+ -regulation. Myosin crossbridge interactions with actin, both in the presence and absence of ATP, enhanced the Ca2+ binding affinity of only class-2 sites. These effects of myosin crossbridges, however, were much smaller than the effects on the Ca2+ binding to the low-affinity sites of fast skeletal troponin C, which are responsible for regulating fast skeletal myofibrillar ATPase. These findings provide strong evidence that the reduction in the cooperative response to Ca2+ upon substituting cardiac troponin C into fast skeletal myofibrils is due to a decrease in the positive feedback interaction between myosin crossbridge attachment and Ca2+ binding to the regulatory site of troponin C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号