首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-power, high-sensitivity planar lightwave circuit (PLC) module, comprising a laser diode (LD) and a photodiode (PD) surface mounted on a PLC platform, has been realized by a novel passive alignment technique. We used a spot-size transformed LD and a corner-illuminated PD to form a highly efficient optical coupling between the devices and a PLC waveguide. We used the unique marker alignment method to ensure accurate positioning of them. The positioning precision achieved in the lateral direction was within 1 μm for the LD's and within 10 μm for the PD's. The rotational precision was within 0.4° for both chips. We realized high power operation (>8 mW) with a high receiver sensitivity (0.3 A/W). In this paper, we describe a high power, high sensitivity PLC incorporating a novel passive optical alignment technique for LD's and PD's  相似文献   

2.
A novel demountable optical device is developed for coupling single-mode waveguides to a multifiber array using passive alignment. This device is fabricated by forming V-grooves on a waveguide chip and precisely molding both end portions of the chip. The 1/spl times/8 coupling device exhibits a low insertion loss of 10.7 dB and a small loss change of /spl plusmn/0.2 dB for 100 reconnections.  相似文献   

3.
We report the realization of a low cost 1.55-/spl mu/m spot size converted (SSC) laser using conventional SCH-MQW active layers. The laser consists of a rectangular gain section, a linear taper and a passive waveguide. The lateral taper and the passive waveguide are fabricated on the same lower SCH layer, using conventional photolithography and RIE (reactive ion etching). The device exhibits low beam divergence of 6.6/spl deg//spl times/10.9/spl deg/ and -2.2-dB coupling loss with a cleaved single-mode fiber. The 1-dB alignment tolerance is /spl plusmn/2.15 /spl mu/m in vertical direction and /spl plusmn/2.3 /spl mu/m in lateral direction, respectively.  相似文献   

4.
A 13-25-GHz GaAs bare die low noise amplifier is embedded inside a multilayer liquid crystal polymer (LCP) package made from seven layers of thin-film LCP. This new packaging topology has inherently unique properties that could make it an attractive alternative in some instances to traditional metal and ceramic hermetic packages. LCP is a near-hermetic material and its lamination process is at a relatively low temperature (285/spl deg/C versus >800/spl deg/C for ceramics). The active device is enclosed in a package consisting of several laminated C0/sub 2/ laser machined LCP superstrate layers. Measurements demonstrate that the LCP package and the 285/spl deg/C packaging process have minimal effects on the monolithic microwave integrated circuit radio frequency (RF) performance. These findings show that both active and passive devices can be integrated together in a homogeneous laminated multilayer LCP package. This active/passive compatibility demonstrates a unique capability of LCP to form compact, vertically integrated (3-D) RF system-on-a-package modules.  相似文献   

5.
The design, fabrication, and performance of double-stage taper photodiodes (DSTPs) are reported. The objective of this work is to develop devices compatible with 40-Gb/s applications. Such devices require high efficiency, ultrawide band, high optical power handling capability, and compatibility with low-cost module fabrication. The integration of mode size converters improves both the coupling efficiency and the responsivity with a large fiber mode diameter. Responsivity of 0.6 A/W and 0.45 A/W are achieved with a 6-/spl mu/m fiber mode diameter and cleaved fiber, respectively, providing relaxed alignment tolerances (/spl plusmn/1.6 /spl mu/m and /spl plusmn/2 /spl mu/m, respectively), compatible with cost-effective packaging techniques. DSTPs also offer a wide bandwidth greater than 40 GHz and transverse-electric/transverse-magnetic polarization dependence lower than 0.2 dB. Furthermore, a DSTP saturation current as high as 11 mA results in optical power handling greater than +10 dBm and a high output voltage of 0.8 V. These capabilities allow the photodiode to drive the decision circuit without the need of a broad-band electrical amplifier. The DSTP devices presented here demonstrate higher responsivities with large fiber mode diameter and better optical power handling capabilities and are compared with classical side-illuminated photodiodes.  相似文献   

6.
This paper describes the design and development of a 2.5-Gb/s optical transceiver module as a mixed signal SOP for access networks. The module development consists of concurrent design of an optoelectronic package optimizing optical, electrical, thermal, mechanical functions and optical subassembly and RFICs housed in a chip-on-board package. The optical subassembly (OSA) consists of laser and photodiode assembled on a silicon substrate. The transmit and the receiver sections are combined into a single fiber through a polymer coupler on silicon. The splitter between the transmit and receive section is realized using a polymer waveguide. The electronic ICs are assembled on a multilayer organic substrate. The package design includes optical coupling design, impedance matched transmission line design for RF signals, electrical layout design for mixed signals and thermal design for the package. The module is housed in a plastic molded nonhermetic package to achieve low cost packaging. The assembly is completed using passive alignment of optical devices and attachment of electronic devices using adhesives. In this paper, we present the details of the component design and the development of packaging process methods to achieve the design specifications, test results and process guidelines for assembly and integration.  相似文献   

7.
A SOI-based optical board technology is presented. Hybrid integration combines the strength of silicon and InP. The SOI board provides passive optical components and acts as the mounting platform. Adapted active III/V devices are integrated using Au/Sn solder technology and passive alignment. Precise mounting of lasers on the board is necessary to ensure low coupling losses.  相似文献   

8.
A novel fabrication method and structure of a planar lightwave circuit (PLC) platform for hybrid integration of an optical module by passive alignment technology is presented. Precise formation of V-grooves in the PLC platform can be easily obtained by the proposed process. The passive alignments of optical elements, including optical fiber, are achieved in one-mask. LD modules were implemented by the proposed method  相似文献   

9.
A useful technique for high precision passive coupling of single mode optical fibers to integrated optical devices is crucial for cost effective packaging especially in multiport devices like switches (N×N) and other WDM components. These devices were fabricated on two different material bases, silicon on insulator (SOI) and polymers. In both cases the waveguides are based on the oversized rib waveguide concept and utilize silicon as a substrate. Two possible fabrication processes for this passive fiber chip coupling IN or ON silicon are presented and compared. The first approach involves a technology similar to flip chip fabrication using a sub- and superstrate, that allows separate processing of v-grooves for fiber alignment and the integrated optical devices. The self aligned mounting of the chip is achieved by a v-shaped rib-groove combination created by wet chemical etching, where the rib is the exact negative of the groove so that the flip chip is put on precisely defined crystal planes rather than on sensitive edges, which would be the case when using rectangular alignment ribs. The second approach utilizes the same chip for waveguides and fiber alignment structures which makes it possible to define both in the same lithographic step and thereby eliminating any vertical displacement. Processing difficulties arise primarily from completely different processing requirements of fiber aligning v-grooves and integrated waveguides. The need to define patterns of the size of only several microns (μm) in the proximity to deep grooves makes the use of an electrophoretic photoresist necessary that is deposited via galvanic means on the extremely nonplanar surface. Both processes allow for fiber chip alignment precisions in the sub-μm range which was also experimentally verified with coupling losses as low as 0.7 dB per end-face. The fabrication processes along with experimental and theoretical results are presented  相似文献   

10.
A novel printing process via hot embossing of either grating or micro-mirror microstructures has been demonstrated in thermoplastic acrylic lacquer. Embossing experiments were performed in the temperature range 100-150 °C and at 80 kN force. The range of microstructures has included a dot-matrix hologram, grating-based optically variable devices (OVDs) and a micro-mirror based OVD. High quality replicas of each type of device have been fabricated using this process. Embossed replicas of grating-based OVDs have shown optical effects including image switching and color movement. For devices based on micro-mirror arrays, the embossed replicas have shown an optically variable switch between a portrait and a non-portrait image. Printing via an embossing process offers the possibility of incorporating optically variable devices into documents without the use of hot stamping foil. This is particularly relevant for documents based on polymeric substrates such as credit cards and polymer banknotes.  相似文献   

11.
A low cost and high performance hybrid WDM module assembled by passive alignment has been developed for FTTH systems. High coupling efficiency of a spot-size converter integrated laser diode to a PLC waveguide, which facilitates mass production of the module, is achieved. A minimum optical received power of -37 dBm for a 50 Mbit/s burst signal is also achieved  相似文献   

12.
A report is presented on the fabrication, by a femtosecond stretched-cavity Ti:Sapphire oscillator, of passive photonic devices operating in the telecom range. The waveguides are written in IOG10 (Schott) glass. Characterisation and performances of a 1/spl times/2, 1/spl times/4 splitter are presented.  相似文献   

13.
The reflective self-organized lightwave network (R-SOLNET) enables the formation of self-aligned waveguides in the photorefractive (PR) material between misaligned optical devices by introducing a write beam. The incident write beam from one device and the reflected write beam from the second device induce self-focusing in the PR material and construct a coupling waveguide. A wavelength filter on the waveguide edge is used to facilitate the reflected beam. The beam propagation method reveals that R-SOLNET exhibits higher coupling efficiencies and better tolerances than the one-beam-writing SOLNET and the free-space coupling. The apparent usefulness of R-SOLNET is remarkable for gaps wider than 100 /spl mu/m in 8-/spl mu/m-wide waveguide circuits. For 240-/spl mu/m gap, coupling efficiency better than 50% can be achieved even when the lateral misalignment is as large as 4 /spl mu/m. The results indicate that R-SOLNET may be useful for vertical waveguide constructions of optical z-connections in three-dimensional intrachip optical interconnects and switching systems, as well as for self-aligned optical couplings with devices that cannot emit write beams such as vertical-cavity surface-emitting lasers, photodetectors, and electrooptic switches.  相似文献   

14.
The results achieved with polymer Y-splitters, codirectional couplers, and multimode interference couplers, realized by deep ultraviolet lithography are presented. The devices are designed and fabricated for the 1.55-/spl mu/m wavelength region and have a waveguide loss of 1 dB/cm. The waveguide width is 7.5 /spl mu/m. The fiber-chip coupling loss is 0.5 dB per facet. The polarization-dependent loss is <0.15 dB.  相似文献   

15.
We demonstrate a monolithically integrated 1.55-/spl mu/m wavelength InGaAsP-InP multiple-quantum-well (MQW) laser with a passive Y-branch waveguide in a vertical twin-waveguide structure. To reduce the sensitivity of the device performance characteristics to laser cavity length and variations in the layer structure, we introduce an In/sub 0.53/Ga/sub 0.47/As absorption, or "loss" layer. This layer eliminates the propagation of the even mode, while having minimal effect on the odd mode. The threshold current densities and differential efficiencies of the devices are unaffected by the loss layer. A record high coupling efficiency of 45% from the laser to the external passive waveguide is obtained.  相似文献   

16.
Packaging and assembly covers almost 80% of the overall cost of any fiber-optic devices. It is thus a demanding issue to lower the cost of fiber-optic alignment and attachment process. This work summarizes the results for the development of automated alignment and attachment processes for the packaging of 1/spl times/8 collimator arrays, which are critical for many photonic devices. The emphasis of this work is on the comparison of the use of three different UV-curing adhesives (Adhesives A, B, and C). It is concluded that regardless of curing shrinkage, a proper adhesive joint design can alleviate the optical loss effect of the relative fiber-lens displacement induced during curing and the subsequent cooling processes.  相似文献   

17.
Single-mode, phosphorus-doped glass waveguides have been formed in silicon V-grooves by chemical vapor deposition. The fabrication process is reproducible, involves few steps, and produces waveguides with a loss on the order of 0.1 dB/cm at a wavelength of 0.633 μm. These waveguides are compatible with passive V-groove fiber alignment and out-of-plane coupling from integrated taps and end facets to surface-mounted optoelectronic devices  相似文献   

18.
Ultrasonic hot embossing allows fabrication of metal patterns onto a polymer film with a low cost and rapid process. A polymer layer with a thin metal film on top is welded onto the polymer substrate where there are protruding micro structures on the tool. Edges around the protruding structures cut the metal layer and ensure electrical insulation. The entire process performs in a few seconds. The non-welded areas are mechanically removed after this process. An antenna of a radio frequency identification device (RFID) and a flexible membrane keyboard were fabricated by embossing 10- $mu$m-thick conductive paths from an aluminum foil onto polypropylene films, 150 and 250 $mu$m in thickness. Antenna circuits have been proven to show the expected resonance frequencies and the keyboard was successfully employed as an input device for a PC.   相似文献   

19.
We optimized the etching process for butt coupling to improve the reproducibility and the uniformity of the process for the integrated GaInAsP multiquantum-well laser with a butt-coupled waveguide. Three different ways of etching process were tested, which are reactive ion etching (RIE), RIE followed by a small amount (50 nm thick) of selective wet etching, and RIE followed by an adequate amount (125 nm thick) of selective wet etching. RIE followed by an adequate amount of selective wet etching showed the superior properties to the common expectation on RIE only, giving the measured coupling efficiency 96/spl plusmn/1.7% versus 34/spl plusmn/8%. The high coupling efficiency and the very small variation across a quarter of a 2-in wafer demonstrate that RIE coupled with an adequate amount of selective wet etching can also replace the conventional process for butt coupling, RIE followed by HBr-based nonselective wet etching, to fabricate high-quality integrated photonic devices.  相似文献   

20.
Oxide-confined top-emitting vertical-cavity surface-emitting-laser (VCSEL) 8 /spl times/ 8 arrays were designed and fabricated with ultralow thresholds. The arrays were flip-chip bonded onto sapphire substrates and mounted in pin-grid-array packages as optical transmitter arrays. By using the offset-contact bonding process, we were able to obtain very high yield for hybridized devices without damaging the VCSEL mesas. Room-temperature lasing thresholds below 70 /spl mu/A were found from some of these packaged VCSELs with measured oxide apertures 2.6 /spl mu/m in diameter. The emission spectrum at an injection current of 70 /spl mu/A showed a full-width at half-maximum linewidth of less than 2.5 A. Polarization properties were also confirmed from the output of the device. The superior performance was attributed to the optimized size and placement of the confinement aperture and the precise alignment of the gain profile of the active region to the mode of the resonant cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号