首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AnX-band mixer using GaAS Schottky barrier diodes with a thin-film 500-MHz IF preamplifier was developed using hybrid microwave integrated circuit techniques. The balanced mixer had filters to provide a short circuit at the image frequency. The entire mixer preamplifier occupied an area of only 0.38 square inches and had a noise figure of 6.7 dB which corresponded quite closely to the theoretical noise figure considering all losses. The thin-film IF amplifier alone had a 2.2-dB noise figure and the mixer IF amplifier coupling network had a loss of 0.4 dB.  相似文献   

2.
An X-band mixer using GaAs Schottky barrier diodes with a thin-film 500-MHz IF preamplifier was developed using hybrid microwave integrated circuit techniques. The balanced mixer had filters to provide a short circuit at the image frequency. The entire mixer preamplifier occupied an area of only 0.38 square inches and had a noise figure of 6.7 dB which corresponded quite closely to the theoretical noise figure considering all losses. The thin-film IF amplifier alone had a 2.2-dB noise figure and the mixer IF amplifier coupling network had a loss of 0.4 dB.  相似文献   

3.
Ka-band monolithic GaAs balanced mixers   总被引:1,自引:0,他引:1  
Monolithic integrated circuits have been developed on semi-insulating GaAs substrates for millimeter-wave balanced mixers. The GaAs chip is used as a suspended stripline in a cross-bar mixer circuit. A double sideband noise figure of 4.5 dB has been achieved with a monolithic GaAs balanced mixer filter chip over a 30- to 32-GHz frequency range. A monolithic GaAs balanced mixer chip has also been optimized and combined with a hybrid MIC IF preamplifier in a planar package with significant improvement in RF bandwidth and reduction in chip size. A double sideband noise figure of less than 6 dB has been achieved over a 31- to 39-GHz frequency range with a GaAs chip size of only 0.5 × 0.43 in. This includes the contribution of a 1.5-dB noise figure due to IF preamplifier (5-500 MHz).  相似文献   

4.
Three-dimensional (3-D) microwave monolithic integrated circuit (MMIC) technology, that incorporates slits in the ground metal, was applied to K-band low noise amplifier (LNA) and I/Q mixer to provide a low cost solution for various K-band receivers such as for P-to-P radio, WLAN, and UWB sensors. The LNA incorporates a quasicoplanar stub in the input-matching network, improving the noise figure by 1 dB. This low-noise amplifier (LNA) exhibits a noise figure of 2.5 dB with an associated gain of 16 dB and an area of 0.75/spl times/0.65 mm/sup 2/. The I/Q resistive mixer incorporates a broadside 3-dB coupler with a 22-/spl mu/m-wide slit in the ground metal beneath the coupled thin-film micro-strip (TFMS) lines (patent pending). The insertion loss of the 3 dB coupler is 0.75 dB. The I/Q mixer exhibits a conversion loss of less than 14 dB at 0.1-2.0GHz IF frequencies for 2-dBm local input power. These LNA and mixer potentially make it easier to integrate receiver functions in a die.  相似文献   

5.
12-GHz-band GaAs dual-gate MESFET monolithic mixers have been developed for use in direct broadcasting satellite receivers. In order to reduce chip size, a buffer amplifier has been connected directly after a mixer IF port, instead of employing an IF matching circuit. The mixer and the buffer were fabricated on separate chips, so that individual measurements could be achieved. Chip size is 0.96X 1.26 mm for the mixer and 0.96X0.60 mm for the buffer. A dual-gate FET for the mixer, as well as a single-gate FET for the buffer, has a closely spaced electrode structure. Gate length and width are 1 µm and 320 µm, respectively. The mixer with the buffer provides 2.9+-0.4-dB conversion gain with 12.3+-0.3dB SSB noise figure in the 11.7-12.2-GHz RF band. Local oscillator (LO) frequency is 10.8 GHz. A low-noise converter was constructed by connecting a monolithic preamplifier, an image rejection filter, and a monolithic IF amplifier to the mixer. The converter provides 46.8+-1.5-dB conversion gain with 2.8+-0.2-dB SSB noise figure in the same frequency band.  相似文献   

6.
Monolithic integrated circuits have been developed on semi-insulating GaAs substrates for millimeter-wave balanced mixers. The GaAs chip is used as a suspended stripline in a cross-bar mixer circuit. A double sideband noise figure of 4.5 dB has been achieved with a monolithic GaAs balanced mixer filter chip over a 30- to 32-GHz frequency range. A monolithic GaAs balanced mixer chip has also been optimized and combined with a hybrid MIC IF preamplifier in a planar package with significant improvement in RF bandwidth and reduction in chip size. A double sideband noise figure of less than 6 dB has been achieved over a 31- to 39-GHz frequency range with a GaAs chip size of only 0.5x0.43 in. This includes the contribution of a 1.5-dB noise figure due to if preamplifier (5-500 MHz).  相似文献   

7.
A simple low-cost and high-performance 22 GHz band down-converter developed for a direct-to-home satellite broadcasting system is discussed. The down-converter consists of a low-noise high electron mobility transistor (HEMT) preamplifier, an image recovery mixer with a particular structure using dielectric resonator filters, a 21.4 GHz GaAs FET oscillator stabilized by a dielectric resonator, and an IF amplifier. These components are fully integrating using microwave integrated circuit technology into a small size. A total noise figure of less than 2.8 dB is obtained over the 22.5-23.0 GHz frequency range. The local oscillator achieves a frequency variation of less than 600 kHzp-p over a temperature range of -20° to +60°C  相似文献   

8.
The portion of a monolithic receiver containing integrated Schottky mixer diodes and MESFET'S with microstrip circuitry has been developed and tested at 31 GHz. This work is part of a program to establish the feasibility of monolithic receivers and transmitters at microwave and millimeter-wave frequencies. Receiver designs using high-cutoff frequency diodes in a mixer configuration followed by a MESFET amplifier are capable of operating from microwave through millimeter-wave frequencies. However, the fabrication of monolithic receiver designs requires the integration on the same wafer of devices with different material requirements. We have developed a compatible integration scheme which is fundamental to the fabrication of monolithic receivers at millimeter-wave frequencies. Fabrication and design considerations for the 31-GHz balanced mixer and IF preamplifier are described. Completed monolithic units typically exhibit a conversion gain of 4 dB from the signal frequency of 31 GHz to the IF frequency of 2 GHz. The associated noise figure is typically 11.5 dB.  相似文献   

9.
The design, fabrication, and evaluation of a W-band image-rejection downconverter based on pseudomorphic InGaAs-GaAs HEMT technology are presented. The image-rejection downconverter consists of a monolithic three-stage low-noise amplifier, a monolithic image-rejection mixer, and a hybrid IF 90° coupler with an IF amplifier. The three-stage amplifier has a measured noise figure of 3.5 dB, with an associated small signal gain of 21 dB at 94 GHz while the image-rejection mixer has a measured conversion loss of 11 dB with +10 dBm LO drive at 94.15 GHz. Measured results of the complete image-rejection downconverter including the hybrid IF 90° coupler and a 10 dB gain amplifier show a conversion gain of more than 18 dB and a noise figure of 4.6 dB at 94.45 GHz  相似文献   

10.
本文研究了影响混频噪声系数的诸因素,提出采用砷化镓肖特基势垒二极管、交叉场混频器和和频回收来实现低噪声混频器。实测的最小噪声系数为5.8dB(包括前中噪声系数1.5dB),最大为7dB。实验结果与理论计算相一致。  相似文献   

11.
报道了工作频率分别为10.7-11.6GHz和11.7-12.2GHzGaAs单片接收机的研制结果。接收机并包括四种电路,即低噪声效大器、介质稳频振荡器、混频器和中频放大器。电路均采用GaAs全离子注入平面工艺创作,并封装在金属管壳内测试.10.7-11.6GHz接收机的噪声系数达到3.5dB,增益大于35dB;11.7-12.2GHz接收机的噪声系数可达到4dB,增益大于31dB。  相似文献   

12.
Maas  S.A. 《Electronics letters》1985,21(3):104-105
A low-noise 45 GHz mixer has been realised using a high electron mobility transistor (HEMT). This is the first reported active mixer above 30 GHz and the first reported HEMT mixer. The mixer exhibits 1.5 dB maximum gain at 4 dBm local oscillator (LO) power and 8.1 dB noise figure, including a 2.6 dB NF IF amplifier, at 2 dBm LO power.  相似文献   

13.
Integration of a double-balanced mixer and ferrite-disk type circulators have been successfully achieved in the 26-GHz band. The total single-sideband noise figure of the integrated circuit, composed of a mixer and two circulators, is 8.5 dB, including the noise contribution from an IF amplifier. The double-balanced mixer is composed of microstrip lines, slot lines, coupled slot lines, coplanar lines, Au wires, and four beam lead Schottky-barrier diodes. The minimum conversion loss of the mixer is 5.3 dB at a signal frequency of 25.4 GHz. Isolation between RF and LO ports is greater than 30 dB. The ferrite-disk type circulator is produced by a newly developed precise machining technique. The minimum insertion loss of the circulator is 0.45 dB, and the isolation is greater than 20 dB. The integrated circuit with the ferrite-disk type circulators will be extended to the millimeter-wave band.  相似文献   

14.
A 1.9 GHz wireless receiver front-end (low-noise preamplifier and mixer) is described that incorporates monolithic microstrip transformers for significant improvements in performance compared to silicon broadband designs. Reactive feedback and coupling elements are used in place of resistors to lower the front-end noise figure through the reduction of resistor thermal noise, and this also allows both circuits to operate at supply voltages below 2 V. These circuits have been fabricated in a production 0.8 μm BiCMOS process that has a peak npn transistor transit frequency (fT) of 11 GHz. At a supply voltage of 1.9 V, the measured mixer input third-order intercept point is +2.3 dBm with a 10.9 dB single-sideband noise figure. Power dissipated by the mixer is less than 5 mW. The low-noise amplifier input intercept is -3 dBm with a 2.8 dB noise figure and 9.5 dB gain. Power dissipation of the preamplifier is less than 4 mW, again from a 1.9 V supply  相似文献   

15.
已经研制成功30GHz接收机用的几种单片集成电路.低噪声放大器芯片在14dB增益时噪声系数为7.dB,中频放大器在30dB控制范围内,增益为13dB.混频器和移相器变频损耗和插入损耗分别为10.5dB和1.6dB.  相似文献   

16.
Several monolithic integrated circuits have been developed to make a 30-GHz receiver. The receiver components include a low-noise amplifier, an IF amplifier, a mixer, and a phase shifter. The LNA has a 7-dB noise figure with over 17 dB of associated gain. The IF amplifier has a 13-dB gain with a 30-dB control range. The mixer has a conversion loss of 10.5 dB. The phase shifter has a 180° phase shift control and a minimum insertion loss of 1.6 dB.  相似文献   

17.
An RF front-end IC containing a low-noise amplifier and mixer is described. On-chip temperature and supply-voltage compensation is used to stabilize circuit performance. Realized in a BiCMOS process, the circuit consumes 13.0-mA total current from a 5-V supply. The amplifier gain at 900 MHz is 16 dB, the noise figure is 2.2 dB, and the input third-order intermodulation intercept is -10 dBm. The mixer input third-order intermodulation intercept is +6 dBm with 15.8 dB noise figure  相似文献   

18.
We present a monolithically integrated high third-order intercept point (IP3) radio frequency (RF) receiver chip set for mobile radio base stations up to 2 GHz, in a 25-GHz fT Si bipolar production technology. The chip set consists of a RF preamplifier, active mixer circuits, and an intermediate frequency (IF) limiter. The preamplifier gain is 12 dB, the noise figure is 5.5 dB at 900 MHz, and the output (OIP3) is up to +24 dBm depending on supply voltage. The two different mixers provide a conversion gain of 1.5 dB up to 3 dB, an OIP3 in the range of +21 dBm up to +29 dBm, and a minimal single sideband (SSB) noise figure of 13 dB. The IF limiter shows an excellent limiting characteristic at 10 dBm output power and has a high bandwidth of more than 1 GHz  相似文献   

19.
六毫米波段交叉杆式悬置微带线混合集成混频器   总被引:2,自引:0,他引:2  
本文给出六毫米波段交叉杆式悬置微带线混合集成混频器的设计过程。采用国产同轴陶瓷封装型肖特基势垒混频二极管,当本振为47.4GHz时,测得双边带噪声系数7.6dB(包括前中噪声系数1.5dB)。  相似文献   

20.
Tsironis  C. 《Electronics letters》1981,17(17):617-618
A hybrid integrated 12 GHz receiver, fabricated on a 1 ×2N alumina substrate, contains a two single-gate FET preamplifier, one dual-gate FET self-oscillating mixer, IF matching and bias filters of all FETs. 11?14 dB conversion gain for a bandwidth of 400 MHz and an associated noise figure of 4.5?5 dB have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号