首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aging immune system is characterized by a progressive decline in the responsiveness to exogenous antigens and tumors in combination with a paradoxical increase in autoimmunity. From a clinical viewpoint, deficiencies in antibody responses to exogenous antigens, such as vaccines, have a major impact and may reflect intrinsic B cell defects or altered performance of helper T cells. Here we describe that aging is associated with the emergence of an unusual CD4 T cell subset characterized by the loss of CD28 expression. CD28 is the major costimulatory molecule required to complement signaling through the antigen receptor for complete T cell activation. CD4+ CD28- T cells are long-lived, typically undergo clonal expansion in vivo, and react to autoantigens in vitro. Despite the deficiency of CD28, these unusual T cells remain functionally active and produce high concentrations of interferon-gamma (IFN-gamma) and interleukin-2 (IL-2). The loss of CD28 expression is correlated with a lack of CD40 ligand expression rendering these CD4 T cells incapable of promoting B cell differentiation and immunoglobulin secretion. Aging-related accumulation of CD4+ CD28- T cells should result in an immune compartment skewed towards autoreactive responses and away from the generation of high-affinity B cell responses against exogenous antigens. We propose that the emergence of CD28-deficient CD4 T cells in the elderly can partially explain age-specific aberrations in immune responsiveness.  相似文献   

2.
3.
Engagement of CD28 induces a major costimulatory pathway required by many CD4+ T cells in addition to activation via the TCR. In the absence of signals provided by CD28, ligation of the TCR alone can induce anergy or apoptosis in CD28+ cells. However, we report here characterization of a distinct subset of CD4+ T cells that are CD28-. Three autoreactive CD4+ human T cell clones that could be activated to produce IL-2 and proliferate by anti-CD3 alone were found to lack expression of CD28. CD28- clones that were activated with anti-CD3 alone were not anergic to restimulation via CD3. The presence of CD28-CD4+ T cells was verified in peripheral blood, and their frequency ranged from 0% to >22% of CD4+ T cells in different individuals. The percentage of CD28-CD4+ T cells in the peripheral blood of 57 individuals was significantly correlated with specific class II MHC alleles. Persons with HLA-DRB1*0401 and DR1 alleles had significantly higher numbers of CD28- T cells, while individuals with HLA-DR2(15) had significantly fewer CD28-CD4+ T cells than the mean. Like the CD28- clones, CD28-CD4+ T cells isolated from peripheral blood proliferated upon CD3 cross-linking in the absence of costimulation. The finding that CD28-CD4+ T cells resist induction of anergy following engagement of the TCR in the absence of conventional costimulation demonstrates one mechanism by which autoreactive T cells can escape processes that censor self-reactivity. The MHC associations observed suggest a relationship with autoimmunity and loss of self-tolerance.  相似文献   

4.
This study examines the influence of IL-7 on post-thymic CD4+ T cells using cord blood as a model system. Survival of naive cord blood T cells in the presence of IL-7 alone was significantly prolonged by up-regulating bcl-2, thereby preventing apoptosis while maintaining maximal cell viability. Cultures without IL-7 showed high rates of apoptosis resulting in 50% cell death by day 5 of culture. Upon phorbol 12-myristate 13-acetate + ionomycin stimulation, accumulation of cytoplasmic IL-2 was similar to that observed in freshly isolated cells, but no IL-4- or IFN-gamma-positive cells were detected. IL-7 maintained the naive T cells in a quiescent state expressing the CD45RA antigen. A significant finding was the loss of CD38 antigen expression on the naive cord blood T cells to levels similar to that observed on adult naive T cells. In contrast to the reduced proliferative response of fresh cord blood T cells to anti-CD2 + CD28 stimulation, the proliferative response of IL-7-treated cells was similar to that of adult naive T cells. This study shows that as well as maintaining the naive T cell pool by enhancing cell survival and up-regulating bcl-2 expression, IL-7 also functions as a maturation factor for post-thymic naive T cells.  相似文献   

5.
A peculiar feature of rheumatoid arthritis patients is that they carry clonally expanded CD4+ and CD8+ cells in the peripheral blood. While the distortion of the repertoire of CD8+ cells has been ascribed to the increase of CD8+ CD57+ large granular lymphocytes, often detected in these patients, the mechanism responsible for the clonal expansion of CD4+ cells remains unexplained. Here, we report that CD4+ CD57+ cells, that in healthy individuals represent a small subset of peripheral CD4+ lymphocytes, are significantly expanded in the peripheral blood of a considerable percentage of rheumatoid arthritis patients. Furthermore, the expansion of these lymphocytes appears to correlate with the presence of rheumatoid factor. The molecular analysis of the T-cell receptor variable beta segments expressed by the CD4+ CD57+ cells enriched in rheumatoid arthritis patients showed that they use restricted repertoires, that partially overlap with those of their CD4- CD57+ counterpart. The structural feature of the receptor ligand expressed by these cells revealed that their expansion is most likely mediated by strong antigenic pressures. However, since we also found that CD4+ CD57+ and CD4- CD57+ cells can share the same clonal specificity, it is likely that their selection is not mediated by conventional major histocompatibility complex restricted mechanisms. Thus, while our data demonstrate that CD4+ CD57+ cells play an important role in establishing the imbalance of the CD4+ cell repertoire observed in rheumatoid arthritis patients, they also suggest that these cells have common features with mouse CD4+ CD8- NK1.1+/T cells.  相似文献   

6.
Bcl-2 is a major anti-apoptotic protein expressed in many normal and malignant cells. Recently, low to absent expression was reported in human natural killer (NK) cells cultured in serum-free media which could be induced with stem cell factor. We investigated the expression of bcl-2 protein of NK cells in normal blood donors and compared the bcl-2 expression in CD56+ NK cells with CD3+ T cells. To determine bcl-2 reactivity, a three-color flow-cytometric technique was used. CD56+ CD3- NK cells had an average bcl-2 expression of 83% compared with CD3+ T cells. CD56 and CD3 double positive T cells had an average content of 111% compared with all peripheral CD3+ T lymphocytes. When peripheral mononuclear cells were cultured with interleukin-2 (IL-2), bcl-2 could be upregulated by IL-2 in all cell populations studied. The induction of bcl-2 in these cell populations paralleled the induction in CD56- T lymphocytes cultured under identical conditions. The induction of bcl-2 by IL-2 was confirmed by Western blotting. The maximum induction of bcl-2 by IL-2 was observed at an IL-2 dose of 100-1,000 U/ml. Our data confirm the anti-apoptotic protein bcl-2 as an activation- or proliferation-associated marker of normal NK cells which can be induced by IL-2.  相似文献   

7.
8.
IL-16 is synthesized as a precursor molecule of 68 kDa (pro-IL-16) that is processed by caspase-3, a member of the IL-1 converting enzyme (ICE) family. This cleavage results in a 13-kDa carboxy terminal peptide, which constitutes the bioactive secreted form of IL-16. We have previously reported constitutive IL-16 mRNA expression and pro-IL-16 protein in CD4+ and CD8+ T cells. Although bioactive IL-16 protein is present in unstimulated CD8+ T cells, there is no bioactive IL-16 present in CD4+ T cells. Along these lines, unstimulated CD8+ T cells contain active caspase-3. In the current studies we investigated the regulation of IL-16 protein and mRNA expression in CD4+ T cells and determined the kinetics of secretion following stimulation of the TCR. CD4+ T cells release IL-16 protein following antigenic stimulation, and this release is accelerated in time by costimulation via CD28. However, CD3/CD28 costimulation did not alter IL-16 mRNA appearance or stability in either CD4+ or CD8+ T cells. The secretion of bioactive IL-16 from CD4+ T cells correlated with the appearance of cleavage of pro-caspase-3 into its 20-kDa active form. Thus, resting CD8+ T cells contain active caspase-3 that is capable of cleaving pro-IL-16, whereas CD4+ T cells require activation for the appearance of active caspase-3. The mechanism of release or secretion of bioactive IL-16 is currently unknown, but does not correlate with cellular apoptosis.  相似文献   

9.
OBJECTIVE: Previously, we showed that 15-20% of patients with rheumatoid arthritis (RA) have oligoclonal expansions of peripheral blood CD8+ T cells expressing T cell receptors encoded by the V(alpha)12 (AV12S1) gene. To better understand the significance of these expansions, the present study was undertaken to determine their specificity. METHODS: We cloned and characterized V(alpha)12+,CD8+ T cells from the peripheral blood of 1 RA patient with a clonal expansion of these T cells. RESULTS: The T cell clones were autoreactive since they recognized autologous, but not allogeneic, antigen-presenting cells. Upon activation, these T cells secreted interleukin-4 and interleukin-10. The autoreactive T cell clones were class I major histocompatibility complex (MHC) restricted, by either HLA-B60 or HLA-Cw3. CONCLUSION: A large population of class I MHC-restricted CD8+ T cells in a patient with RA is clonally expanded and autoreactive. These cells define a novel immune aberration in RA and provide a tool for defining the autoantigens that activate expanded T cell populations in vivo.  相似文献   

10.
The increased susceptibility of neonates to infections has been ascribed to the immaturity of their immune system. More particularly, T cell-dependent responses were shown to be biased towards a Th2 phenotype. Our studies on the in vitro maturation of umbilical cord blood T cells suggest that the Th2 bias of neonatal response cannot be simply ascribed to intrinsic properties of neonatal T cells. Phenotypically, neonatal CD4+ T cells are more immature than their adult CD45RO-/RA+ naive counterparts and they contain a subset (10-20%) of CD45RO-/RA+ CD31- cells which is very low in adults and displays some unique functional features. The activation and maturation of neonatal CD4+ T cells is particularly dependent upon the strength of CD28-mediated cosignal which dictates not only the cytokine profile released upon primary activation but also the response to IL-12. Activation of adult as well as neonatal CD4+ T cells in the context of low CD28 costimulation yields to the production of low levels of only one cytokine, i.e. IL-2. In contrast, strong CD28 costimulation supports the production of high levels of type 1 (IL-2, IFN gamma and TNF beta) and low levels of type 2 (IL-4 and IL-13) cytokines by neonatal T cells. The low levels of naive T cell-derived IL-4 are sufficient to support their development into high IL-4/IL-5 producers by an autocrine pathway. The ability of IL-12 to prime neonatal CD4+ T cells for increased production of IL-4 (in addition to IFN gamma) is observed only when CD28 cosignal is minimal. Under optimal activation conditions (i.e. with anti-CD3/B7.1 or allogenic dendritic cells) the response and the maturation of neonatal and adult naive T cells are similar. Thus the Th2 bias of neonatal immune response cannot be simply ascribed to obvious intrinsic T cell defect but rather to particular conditions of Ag presentation at priming. Unlike CD4+ T cells, neonatal CD8+ T cells strictly require exogenous IL-4 to develop into IL-4/IL-5 producers. Most importantly, anti-CD3/B7-activated neonatal CD8 T cells coexpress CD4 as well as CCR5 and CXCR4 and are susceptible to HIV-1 infection in vitro.  相似文献   

11.
Costimulation was originally defined and characterized during primary T cell activation. The signaling events that regulate subsequent antigen encounters by T cells are less well defined. In this study we examined the role of CD30 in T cell activation and defined factors that regulate expression of CD30 on T cells. We demonstrate that CD30 expression is restricted to activated T cells and regulated by CD28 signal transduction. In contrast to CD28-expressing TCR Tg cells, CD28-deficient TCR Tg cells did not express CD30 when cultured with peptide and APCs. However, rIL-4 reconstituted CD30 expression on CD28-deficient TCR Tg cells. Blockade of CD28 interactions or depletion of IL-4 inhibited the induction of CD30, suggesting that both CD28 and IL-4 play important roles in the induction of CD30 expression on wild-type cells. However, CD28 signaling did not up-regulate CD30 expression solely through its ability to augment IL-4 production because IL-4-deficient T cells stimulated with anti-CD3 and anti-CD28 expressed CD30. Induction of CD30 in the absence of IL-4 was not due to the IL-4-related cytokine IL-13. CD30, when expressed on an activated T cell, can act as a signal transducing receptor that enhances the proliferation of T cells responding to CD3 crosslinking. Collectively, the data suggest that T cell expression of CD30 is dependent on the presence of CD28 costimulatory signals or exogenous IL-4 during primary T cell activation. Once expressed on the cell surface, CD30 can serve as a positive regulator of mature T cell function.  相似文献   

12.
IL-12 and IL-18 have the capacity to stimulate IFN-gamma production by T cells. Using a T cell clone, we reported that IL-18 responsiveness is generated only after exposure to IL-12. Here, we investigated the induction of IL-18 responsiveness in resting CD8+, CD4+, and CD4-CD8- T cells. Resting T cells respond to neither IL-12 nor IL-18. After stimulation with anti-CD3 plus anti-CD28 mAbs, CD8+, CD4+, and CD4-CD8- T cells expressed IL-12R, but not IL-18R, and produced IFN-gamma in response to IL-12. Cultures of T cells with anti-CD3/anti-CD28 in the presence of rIL-12 induced IL-18R expression and IL-18-stimulated IFN-gamma production, which reached higher levels than that induced by IL-12 stimulation. However, there was a substantial difference in the expression of IL-18R and IL-18-stimulated IFN-gamma production among T cell subsets. CD4+ cells expressed marginal levels of IL-18R and produced small amounts of IFN-gamma, whereas CD8+ cells expressed higher levels of IL-18R and produced more IFN-gamma than CD4+ cells. Moreover, CD4-CD8- cells expressed levels of IL-18R comparable to those for CD8+ cells but produced IFN-gamma one order higher than did CD8+ cells. These results indicate that the induction of IL-18R and IL-18 responsiveness by IL-12 represents a mechanism underlying enhanced IFN-gamma production by resting T cells, but the operation of this mechanism differs depending on the T cell subset stimulated.  相似文献   

13.
Bcl-2 and bcl-xL function as suppressors of programmed cell death. The expression of bcl-2 protein in vivo is associated with long-lived hematopoietic cells such as mature lymphocytes and early myeloid progenitors. Bcl-xL, a homologue of bcl-2, is also expressed in lymphocytes and thymocytes. In contrast, the bcl-2-related proteins (bax, bad, and bak) act by promoting apoptotic cell death as shown from their expression in hematopoietic cell lines. We analyzed the expression of bcl-2 and bcl-x proteins in hematopoietic precursors obtained from various cell sources in adult mobilized peripheral blood collected from 13 patients with solid tumors, 8 adult bone marrow, and 12 umbilical cord blood. The analysis was based on the expression of the proliferation and activation specific antigens, CD38 and class II (HLA-DR). Similarly, we analyzed the expression of bcl-2-related proteins bcl-xL, bax, bad, and bak before and during ex-vivo expansion. Hematopoietic precursors expressing strongly the CD34 antigen (CD34(s+)) and lacking CD38 or HLA-DR expression were analyzed by using three-color immunofluorescence staining. The majority of CD34(+) cells expressed bcl-2 and unexpectedly showed a bimodal distribution of low and high expression. More cells that lacked or expressed low density CD38 expressed low bcl-2 than the more differentiated counterparts (those with high density CD38). Immaturity (ie, little or no HLA-DR) is associated with the expression of low bcl-2 compared with HLA-DR+. However, HLA-DR-/low population contained a lower number of cells expressing low bcl-2 (30% to 40%) than CD38(-/low) in comparable samples. The hematopoietic precursors with bcl-2(low) and bcl-2(high) formed a homogeneous population of undifferentiated lymphoid-like cells having a similar forward scatter. These cells expressed strongly the bcl-xL protein (>95%) but were bax low (4% to 12%), bad low (0% to 0.8%), and bak low (0% to 3%). The expression of apoptosis specific protein (ASP) was also low (3.4% +/- 3.1%) as was Annexin V. In addition, the CD34(+)/CD38(-) showed low cell cycle activity (<2.2%). Induction of apoptosis by overnight incubation of CD34 cells in serum-deprived medium resulted in the upregulation of bcl-2 as a single population histogram. Thus, these results suggest that in quiescent hematopoietic precursors, the bcl-2 protein plays a less prominent role as a survival promoter than bcl-xL and that the low bcl-2 expression did not promote apoptosis. During day 10 of ex vivo expansion of CD34(+) cells in liquid culture containing stem cell factor, interleukin-3 (IL-3), IL-6, IL-1beta, and erythropoietin, the CD34(+)/CD38(-) cells expressed high bcl-2 as a single population histogram, and greater than 90% were bcl-xL high. However, the expression of pro- and apoptotic antigens increased: bax (10% to 15%), bad (5% to 8%), bak (6% to 14%), and ASP (6% to 10%). These results show the importance of monitoring the expression of these proteins when defining the culture conditions for ex vivo expansion.  相似文献   

14.
bcl-2 proto-oncogene encodes an inner mitochondrial membrane protein that blocks programmed cell death (apoptosis). There is now increasing evidence that regulation of bcl-2 expression is a determinant of life or death in normal lymphocytes. We have recently described that activated (CD45RO+) CD4+ and CD8+ T cells in acute infectious mononucleosis (IM) undergo apoptotic cell death on culturing, indicating an activation-driven cell death of mature T cells. In this work, we examine bcl-2 expression by activated T cells in acute IM using a flow-cytometric analysis with an anti-bcl-2 monoclonal antibody (MoAb). It was consistently observed that most T cells from acute IM patients displayed only much less bcl-2, while normal T cells expressed bcl-2 relatively strongly. Multicolor analysis showed that bcl-2-lacking T cells in acute IM were restricted to the CD45RO+ (activated) populations of CD4+, as well as CD8+ T cells. In contrast, the relatively intense levels of bcl-2 were expressed in both CD45RO+ and CD45RO- T-cell populations from normal subjects. This marked difference in bcl-2 expression of CD45RO+ T cells between acute IM and normal controls was also confirmed by Western blot analysis. Activated (CD45RO+) T cells with low bcl-2 expression, but not bcl-2-expressing CD45RO- T cells, in acute IM patients were found to die easily when cultured without added growth factors. However, in normal individuals, both CD45RO+ and CD45RO- T cells were relatively stable on culturing. These findings suggest that lack of bcl-2 expression by activated (CD45RO+) T cells in acute IM might be associated with their susceptibility to programmed cell death.  相似文献   

15.
The influence of ageing on phenotype and function of CD4+ T cells was studied by comparing young (19-28 years of age) and aged (75-84 years of age) donors that were selected using the SENIEUR protocol to exclude underlying disease. An age-related increase was observed in the relative number of memory cells, not only on the basis of a decreased CD45RA and increased CD45RO expression, but also on the basis of a decrease in the fraction of CD27+CD4+ T cells. Our observation that the absolute number of CD45RO+CD4+ T cells was increased, while absolute numbers of CD27-CD4+ T cells remained unchanged in aged donors, indicates that the latter subset does not merely reflect the size of the CD45RO+CD4+ T cell pool. The increased fraction of memory cells in the aged was functionally reflected in an increased IL-4 production and T cell proliferation, when cells were activated with the combination of anti-CD2 and anti-CD28, whereas IL-2 production was comparable between both groups. No differences were observed with respect to proliferative T cell responses or IL-2 production using plate-bound anti-CD3 or phytohaemagglutinin (PHA). The observation that IL-4 production correlated with the fraction of memory cells in young donors but not in aged donors suggests different functional characteristics of this subset in aged donors.  相似文献   

16.
Clonal expansion of T cell specificities in the synovial fluid of patients has been taken as evidence for a local stimulation of T cells. By studying the T cell receptor (TCR) repertoire of CD4+ T cells in the synovial and peripheral blood compartments of patients with early rheumatoid arthritis (RA), we have identified clonally expanded CD4+ populations. Expanded clonotypes were present in the peripheral blood and the synovial fluid but were not preferentially accumulated in the joint. Dominant single clonotypes could not be isolated from CD4+ cells of HLA-DRB1*04+ normal individuals. Clonal expansion involved several distinct clonotypes with a preference for V beta 3+, V beta 14+, and V beta 17+CD4+ T cells. A fraction of clonally related T cells expressed IL-2 receptors, indicating recent activation. The frequencies of clonally expanded V beta 17+CD4+ T cells fluctuated widely over a period of one year. Independent variations in the frequencies of two distinct clonotypes in the same patient indicated that different mechanisms, and not stimulation by a single arthritogenic antigen, were involved in clonal proliferation. These data support the concept that RA patients have a grossly imbalanced TCR repertoire. Clonal expansion may result from intrinsic defects in T cell generation and regulation. The dominance of expanded clonotypes in the periphery emphasizes the systemic nature of RA and suggests that T cell proliferation occurs outside of the joint.  相似文献   

17.
BACKGROUND: Endogenous interleukin (IL)-10 production has been associated with the lack of graft-versus-host disease (GVHD) in human recipients of MHC-disparate donor grafts. Paradoxically, we have shown that the exogenous administration of high doses (30 microg/dose) of IL-10 to murine recipients of MHC-disparate grafts accelerates GVHD lethality. METHODS: The effects of IL-10 on GVHD mediated by either CD4+ or CD8+ T cells was examined in studies involving exogenous IL-10 administration or the infusion of T cells from IL-10-deficient (-/-) donor mice. The role of interferon (IFN)-gamma on IL-10-induced GVHD acceleration was studied using IFN-gamma-deficient (-/-) donor mice or neutralizing monoclonal antibody. RESULTS: IL-10 was found to have a dose-dependent effect on the GVHD lethality mediated by either CD4+ or CD8+ T cells. High doses of exogenous IL-10 accelerated GVHD lethality. IFN-gamma release was not responsible for the IL-10 facilitation of GVHD lethality. Paradoxically, low doses of IL-10 protected mice against GVHD lethality. The GVHD protective effect of the bioavailability of small amounts of IL-10 was confirmed by demonstrating that the infusion of T cells from IL-10 -/- donors accelerated GVHD lethality. CONCLUSIONS: The results suggest that IL-10 has a dose-dependent effect on the GVHD lethality mediated by CD4+ or CD8+ T cells, such that high doses accelerate lethality, while low amounts of bioavailable IL-10 are protective.  相似文献   

18.
19.
The role of CD4 in T cell activation has been attributed to its capacity to increase the avidity of interaction with APC and to shuttle associated Lck to the TCR/CD3 activation complex. The results presented in this study demonstrate that ligation of CD4 inhibits ongoing responses of preactivated T cells. Specifically, delayed addition of CD4-specific mAb is shown to inhibit Ag- or mAb-induced responses of both primary T cells and T cell clonal variants. The Ag responses of the latter are independent of the adhesion provided by CD4; thus the observed inhibition is not due to blocking CD4-MHC interactions. Further, analysis of the clonal variants demonstrates that CD4-associated Lck is not essential for the inhibition observed, as anti-CD4 inhibits responses of clonal variants, expressing a form of CD4 unable to associate with Lck (double cysteine-mutated CD4). The inhibition is counteracted by the addition of exogenous IL-2, demonstrating that the block is not due to a lesion in IL-2 utilization, rather its production. It is demonstrated that the delayed addition of anti-CD4 results in a rapid reduction in steady-state levels of IL-2 mRNA in both primary T cells and clonal variants.  相似文献   

20.
T cell activation and clonal expansion is the result of the coordinated functions of the receptors for antigen and interleukin (IL)-2. The protein tyrosine kinase p56(lck) is critical for the generation of signals emanating from the T cell antigen receptor (TCR) and has also been demonstrated to play a role in IL-2 receptor signaling. We demonstrate that an IL-2-dependent, antigen-specific CD4(+) T cell clone is not responsive to anti-TCR induced growth when propagated in IL-2, but remains responsive to both antigen and CD3epsilon-specific monoclonal antibody. Survival of this IL-2-dependent clone in the absence of IL-2 was supported by overexpression of exogenous Bcl-xL. Culture of this clonal variant in the absence of IL-2 rendered it susceptible to anti-TCR-induced signaling, and correlated with the presence of kinase-active Lck associated with the plasma membrane. The same phenotype is observed in primary, resting CD4(+) T cells. Furthermore, the presence of kinase active Lck associated with the plasma membrane correlates with the presence of ZAP 70-pp21zeta complexes in both primary T cells and T cell clones in circumstances of responsive anti-TCR signaling. The results presented demonstrate that IL-2 signal transduction results in the functional uncoupling of the TCR complex through altering the subcellular distribution of kinase-active Lck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号