首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
简讯     
大功率GaAsFET目前所采用的三种主要结构是:日本电气公司的缓变凹栅结构,富士通公司的在源和漏电极下作n~ 层的结构和三菱电机公司的铜热沉上倒装片子的结构.日本电气公司的器件已达到6千兆赫,23瓦;8千兆赫,17瓦;18千兆赫,1.25瓦.三菱电机的器件已达到15千兆赫,1.9瓦.低噪声GaAsFET方面也展开了竞争.日本电气公司的窄凹栅结构已在12千兆赫下  相似文献   

2.
据报导三菱电机的MGF-1403型是频率为12千兆赫,最低噪声系数NF_(min)为1.8分贝,功率增益高达10.5分贝的低噪声GaAsFET.同样频率下的最大有用增益MAG达14分贝.在卫星广播上使用.甚至可用在更高的Ku带(12.4—17.6千兆赫).18千兆  相似文献   

3.
X波段GaAsFET     
日本电气公司不久前报导了一种用于小信号放大和振荡的X波段GaAsFETNE24406。此种器件在8.5千兆赫下,噪声系数为2.7分贝;6千兆赫下,噪声系数为2分贝,4千兆赫下,1.5分贝。此器件系带状线封装。  相似文献   

4.
简讯     
普莱赛公司市售GaAs低噪声场效应管 普莱赛公司已市售GAT—4型和GAT—5型GaAs低噪声场效应管。前者工作频率高达12千兆赫,在4千兆赫下噪声系数为1.8分贝,而增益为12分贝;在10千兆赫下最大可用增益为8.5分贝,噪声系数为3.5分贝。后者工作频率高达18千兆赫,在6千兆赫下,噪声系数为2.5分贝,而增益为8分贝,在10千兆赫下最大可用增益为10.5分贝,噪声系数为3.5分贝。两种管子均为n沟道场效应管。栅电极就采用了肖特基势垒二极管。采用中子辐射技术,在半绝缘衬底和有源层之间制造了缓冲层。市售的有管芯,也有微带线封装的器件。  相似文献   

5.
用分子束外延技术试制成两种和以往的汽相外延法具有同样特性的砷化镓场效应晶体管(GaAsFET)。一种是频率为8千兆赫的最小噪声系数为2.5分贝的器件,另一种是8千兆赫下最大饱和输出功率为2瓦的器件。前者是三菱电机公司研制的,后者是富士通研究所研制的。各自独立地在分子束外延技术器件的应用方面进行了探讨。  相似文献   

6.
在一月份举行的日本电子通信学会半导体、晶体管研究会上,日本电气中央研究所发表了微波GaAsMESFET的研究结果.功率器件在6千兆赫下输出达25瓦,增益3分贝;低噪声器件在4千兆赫下噪声系数为0.7分贝,在12千兆赫下为1.68分贝.该所用内部连接的器件已实现了在6千兆赫下输出15瓦,为进一步提高输出功率,由提高集成度、增加FET的单位栅宽,即栅条长度而获得成功.为设计在10伏偏压下输  相似文献   

7.
美国斯佩康公司制造了一种新的平衡混频器,在直流至6千兆赫范围内提供了1分贝中频通带,Ka和K波段的最大噪声系数只有5分贝。CK-10型平衡混频器在28~33千兆赫内有射频输入,60兆赫下噪声系数为5分贝,2.5千兆赫中频下为4.8分贝。本机振荡器-射频隔离度最小为27分贝。而CK-9型混频器的噪声系数在18~26千兆赫范围内略微  相似文献   

8.
简讯     
GaAsFET在功率和频率方面达到新的水平 德克萨斯仪器公司认为,在4~30千兆赫范围内,GaAsFET将是主要的微波功率源。在许多x波段系统中将代替耿二极管和崩越二极管。在空军资助下他们研制的GaAsFET在10千兆赫下输出3.2瓦、增益6分贝、效率22%,单个器件在8千兆赫下输出5.1瓦,增益5分贝、效率35%。 该公司将把8千兆赫1瓦的器件MSX803的单价由1000美元降到250美元(1~9只一批)。并予计在年内将能出售8千兆赫2瓦的器件,其价格可能是1瓦器件的2~3倍,大约是500美元到750美元。  相似文献   

9.
以0.5微米栅长工艺为基础的砷化镓金属半导体场效应管的应用目前已高达18千兆赫。然而。系统的技术条件要求较低的噪声性能和(或)较高的工作频率。本文叙述制造0.3微米栅长器件所需的工艺及其直流特性、直至18千兆赫时的详细射频特性和直至30千兆赫的初步结果。在12、14和18千兆赫时,其噪声系数分别为1.2、1.5和2.1分贝,而相应的增益为12.5、11和9分贝。在28千兆赫时,达到的噪声系数为4.8分贝,而相应的增益为5分贝。研讨了冷却对器件噪声温度的影响。  相似文献   

10.
据报导用最新的GaAsFET可和新的InP耿效应器相竞争。 根据Varian研究小组报导,至少在18.5~26千兆赫下性能非常好。由M·N等人设计的单级放大器证明,18.5~20.5千兆赫频段的增益为9±1分贝,23~26千兆赫频段的增益达8±1分贝。调准最小的中波段噪声系数,末尾的放大器显示了在24千兆赫下噪声系数5.6分贝,并有振荡增益5.0分贝。  相似文献   

11.
本文报导在5厘米波段GaAsFET的基础上,采用氧离子注入代替化学腐蚀台面作隔离,用普通接触式曝光——金属剥离技术制作1微米栅条,采用挖槽法等,可以使GaAsFET性能进入3厘米波段,用ST31生陶瓷管壳封装的器件,在10千兆赫下噪声系数N_F=4.7分贝,同时增益G_(NF)=4.7分贝;或者N_F=5.8分贝,G_(NF)=7.0分贝。文章最后对如何进一步提高器件性能作了讨论。  相似文献   

12.
据美刊《微波杂志》报导,日本在发展用于微波接收的低噪声混频二极管方面正在取得明显的进展。日本电气公司正提供实用的砷化镓肖特基二极管,在9千兆赫下,噪声系数为5分贝,准毫米波的变频损耗为3.5分贝,毫米波二极管的变频损耗为4.5分贝。年内该公司还计划提供工作在60千兆赫、变频损耗为5.5分贝的砷化镓肖特基二极管,中频是1.7千兆赫。日本东芝公司已发展了梁式引线的砷化镓肖特基二极管,在9千兆赫下变频损耗为4  相似文献   

13.
讨论了具有1微米栅的改进的硅(金属半导体场效应晶体管)MESFET,其最高振荡频率已达15千兆赫。以前 MESFET 的改善由降低栅金属化电阻的影响和减小栅压点的寄生来达到。现在,在7千兆赫下,最大可用增益 MAG 为5分贝,并且在6千兆赫下最佳噪声系数 F_0是5分贝。在约小于6千兆赫下器件有条件地不稳定。在3千兆赫下单向增益 U 为20分贝。研究表明,不是所有的寄生效应都已消除。如果源栅之间沟道的串联电阻可以减小,f_(max)将接近由本征晶体管所估计的数值35千兆赫。  相似文献   

14.
近年来,微波晶体管有了很大的发展,在4千兆赫下噪声系数为2.5分贝的双极晶体管和在8千兆赫下噪声系数为3分贝的砷化镓场效应晶体管已达到实用阶段。另外,在大功率晶体管方面,4千兆赫5瓦,3千兆赫10瓦的器件业已获得。这些器件在制造技术上都使用了接近极限的技术,器件的进步不仅取决于设计技术,还与工艺技术的进步关系极大。今后的微波晶体管的进展考虑非采用亚微米加工那样的新的制造技术不可。  相似文献   

15.
本文将双栅MESFET模拟成两个级联的单栅MESFET,用三端信号流通图来分析它的性能特征.并将双栅MESFET当作一个短的行波管来说明其工作原理的物理本质.可以看出,它是一种在微波领域中有着广泛用途的多功能器件.本文还讨论了GaAs双栅MESFET的设计.采用金属剥离工艺制作的双指状、深凹糟1微米栅的双栅MESFET,在4千兆赫下相关增益为20分贝,噪声系数为1.9分贝,在8千兆赫下相关增益为18分贝,噪声系数为2.8分贝.  相似文献   

16.
本文介绍 X 波段砷化镓功率场效应晶体管(FET)的测量结果。这些器件是用简单的平面工艺制作的。多个单元并联的器件在9千兆赫下,输出功率大于1瓦,增益大于4分贝。4分贝增益下,最大输出功率在9千兆赫下为1.78瓦,在8千兆赫下为2.5瓦。8千兆赫下,器件功率附加效率为46%。  相似文献   

17.
采用亚微米栅砷化镓场效应晶体管(NEC V-388)研制成11和14千兆赫低噪声放大器。两级放大器实现的最小噪声系数,在11.2千兆赫时为4.2分贝,14千兆赫时为5.7分贝。该放大器将用作接收机前置级。它由未封装的砷化镓场效应晶体管管芯与制作在兰宝石衬底上的薄膜微带输入和输出电路组成。本文介绍了这类放大器的设计、结构和性能。  相似文献   

18.
英国普莱赛公司研制了低噪声 InP 反射型放大器,在15千兆赫下在1千兆赫带宽范围内,其增益为8分贝。器件结构为 n~÷-n-n~÷夹层结构,外延层厚度为2微米,掺杂浓度为10~(13)厘米~(-3),并具有集成热沉。当频率从12千兆赫变到18千兆赫时,将偏压调到最佳,可使噪声系数在8~9分贝间,其变化小于1分贝。发现噪声系数是外延层掺杂浓度的函数,对于10~(12)厘米~(-3)的载流子浓度,噪声系数渐近地趋近于7~8分贝。  相似文献   

19.
目前,市场上已可小量买到廉价的1微米栅砷化镓肖特基势垒场效应晶体管V244,这种封装好的器件在8千兆赫下增益为11分贝,噪声系数为4分贝。研制工作已基本完成,最近已提交生产部门生产。特别是研制出一种X波段应用的低接触电阻、低寄生参数的新型带线管壳,以及在  相似文献   

20.
本文叙述了GaAs 功率场效应晶体管(FET)X 波段测量的最新结果。这类器件用简单的平面工艺制造,已有25个以上的片子获得9千兆赫下功率增益为4分贝时输出功率至少1瓦的结果。这些片子的载流子浓度在5~15×10~(16)厘米~(-3)范围。迄今,4分贝功率增益下的最大输出功率已观察到在11千兆赫下为1.0瓦,在8千兆赫下为3.6瓦。器件在8千兆赫下的功率附加效率可达46%。本文扼要地叙述了制造工艺,并对影响大输出功率的诸因素进行了讨论。这些因素是8×10~(16)厘米~(-3)左右的外延层载流子浓度、良好的器件热沉和低的寄生电阻。还讨论了所观察到的微波性能与总栅宽、栅长、夹断电压、外延掺杂浓度等因素的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号