首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A field test to quantify the changes in soil temperature and the hydraulic head during electroosmosis was conducted. The anode (3.1?m×3.4?m) was created by laying pieces of titanium mesh coated with mixed metal oxides on top of a 3 cm thick sand layer to a depth of 0.4 m. The cathode (2.5 m in radius) was a hydraulic fracture filled with granular graphite to a depth of 2.2 m. A constant voltage of 47 V was applied for 4 weeks, resulting a nearly constant current of 42 A between the electrodes. The electrical potentials and soil temperatures were monitored at 7.5 cm depth intervals at distances 0.6, 1.2, 2.1, and 3.0 m from the cathode well. Arrays of piezometers were installed at various depths and at radial distances from the cathode well to monitor the hydraulic head distribution. The initial soil temperature decreased by 2–3°C/m of depth with a minor radial gradient. After the power was turned on, the temperature of soil in the vicinity of the graphite increased significantly. The increased temperature propagated outward as a contour in the radial direction of the graphite well causing the vertical temperature gradient to disappear. The propagating speed of the temperature contours decreased with the energy input. In addition, the temperature contours close to the edges of both the mesh and the graphite electrodes increased and propagated outward vertically. In the regions where these three propagating fronts met, the soil temperature profiles were distorted and formed “S” shaped contours. The hydraulic head close to the anode decreased between 0 and 10 cm, whereas it increased between 2 and 6 cm close to the cathode. The results show that electroosmosis caused a hydraulic gradient that was opposite to the electroosmotic flow.  相似文献   

2.
One of the main mechanisms of failure of levees is a phenomenon called “piping,” which generally begins with the formation of a sand boil at the leeward side of the levee, and has been frequently observed to proceed upstream along the base of the levee through a slit formation. The issue of most important concern is to estimate the critical head that could promote the occurrence of piping. Considering the flow through porous media and coupling it with Bernoulli’s equation and a critical tractive stress condition, a model is developed for the critical head. Using appropriate transformations, the proposed model takes on a form which supports Bligh’s empirical findings. Another model based on critical velocity is also developed to estimate the critical head. The functional form of these two models is evaluated using the critical head versus porosity data from a number of laboratory studies conducted in the Netherlands. These models were found to perform better than did Terzaghi’s model.  相似文献   

3.
This paper describes the development of a numerical model to simulate the dynamic response of the bridge–vehicle system of Salgueiro Maia cable-stayed bridge, using the results from an extensive experimental investigation to calibrate this model. Further, a set of stochastic Monte Carlo simulations of the bridge–vehicle dynamic response is also presented, with the purpose of evaluating dynamic amplification factors, taking into account the randomness of different factors associated to characteristics of the pavement, of the vehicles and of the traffic flow.  相似文献   

4.
通过大型通用有限元软件ANSYS建立铸坯凝固过程有限元仿真分析模型,在拉速0.25~0.35m/min,钢水过热度20℃的条件下,对20钢Φ中600mm和40Cr钢Φ500 mm圆坯连铸过程进行了计算和分析,得出距液面0~32 m时铸坯表面温度变化曲线。计算结果表明,当20钢Φ600 mm圆坯的拉速为0.3 m/min时,结晶器出口坯壳厚度为30.9 mm,结晶器出口铸坯温度为1050℃,二冷区表面最低温度978℃铸坯在距液面19.71 mm处完全凝固。Φ600 mm圆坯连铸机20钢生产实践表明,拉速0.25 m/min,结晶器出口铸坯表面温度为1048℃,二冷区表面最低温度为918℃,与模拟结果相似。  相似文献   

5.
This paper compares the behavior of an embankment with nonsymmetric geometry built on soft soil with that predicted numerically using four elastoplastic soil models. Two of these models are based on isotropic conditions (Modified Cam-Clay on its own or in association with Von Mises) and two other are derived from anisotropic conditions (Melanie on its own or conjugated with Mohr Coulomb). The performance of the models, whose parameters are derived from experimental data, is checked against triaxial tests results. For the embankment, the measured and computed displacements and excess pore pressure are compared, with the isotropic models performing best. The maximum horizontal displacements versus settlements, the change in excess pore pressure versus vertical stress, the extent of the yield domain and the contours of the effective vertical and horizontal stress increments are also examined. The numerical results are explained based on the characteristics of the numerical models, namely the size and shape of the yield surface. The embankment, despite its nonsymmetric geometry, exhibits some similarities with typical behavior.  相似文献   

6.
Field investigations of Rassam et al. in 2001 have highlighted the effects of infiltration, drainage, and evapotranspiration on the dynamics of water flow and solute transport in acid sulfate (AS) soils. In this work, HYDRUS-2D is adopted as the modeling tool to elucidate the trends observed in that field experiment. Hypothetical simulations have shown that the relative contribution of drains to lowering the water table is significant only when closely spaced drains are installed in coarse textured soils, evapotranspiration being the main driving force in all other cases. AS soils reaction products that are close to a drain are readily transportable during infiltration and early drainage, but those produced farther away from it near the midpoint between drains are only slowly transported during a prolonged drainage process. Simulating the field trial of Rassam et al. has shown that drain depth and evapotranspiration significantly affect solute fluxes exported to the ecosystem. Managing AS soils should target minimal drain depth and density. Partial or full lining of the drains should be considered as a management option for ameliorating the environmental hazards of AS soils.  相似文献   

7.
304不锈钢棒线材热连轧温度场的数值模拟   总被引:3,自引:0,他引:3  
采用三维大变形热力耦合弹塑性有限元法,借助商业有限元软件MSC.Marc,建立了辽宁特钢 304不锈钢棒线材18道次连轧过程的三维数学模型。采用3组连续模型模拟了该过程,道次出口处采用刚性 面控制轧件前进,各模型之间的数据通过插值方式传递,得出304不锈钢轧件同一截面上心部、中部和表面点 从出炉到18道次轧制过程的温降曲线。计算结果与实测值吻合,误差为5~50℃.  相似文献   

8.
利用CFD商用软件Flow-3d,对内外复合冷却结晶器内钢水充型过程流场温度场耦合作用下的 流动和凝固状况进行数值模拟,得到了流场温度场的分布图和充填过程中自由表面的位置和形状图。分析了 板坯连铸充型过程中流场温度场对钢水凝固的影响。结果表明内冷却器可改善钢水的流动,有利于钢液中的 夹杂物上浮,加快结晶器内钢液的凝固  相似文献   

9.
A series of four dynamic centrifuge model tests was performed to investigate the effect of foundation densification on the seismic performance of a zoned earth dam with a saturated sand foundation. In these experiments, thickness of the densified foundation layer was systematically increased, resulting in a comprehensive set of dam-foundation response data. Herein, Class-A and Class-B numerical simulations of these experiments are conducted using a two-phase (solid and fluid) fully coupled finite element code. This code incorporates a plasticity-based soil stress–strain model with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate reduced deformations and increased crest accelerations with the increase in densified layer thickness. Overall, the differences between the computed and recorded dam displacements are under 50%. At most locations, the computed excess pore pressure and acceleration match the recorded counterparts reasonably well. Based on this study, directions for further improvement of the numerical model are suggested.  相似文献   

10.
Q215钢棒材热轧后湍流冷却过程温度场数值模拟   总被引:1,自引:0,他引:1  
利用湍流管式冷却系统可以提高棒材热轧后冷却效率,使棒材表面形成回火马氏体,提高其力学性能。运用有限元分析软件MSC.Marc分析了Φ25 mm Q215钢棒材热轧后湍流冷却过程的温度场。结果表明,棒材离开湍流式冷却系统1 s时,棒材表面由950.0℃(终轧温度)降至768.0℃,芯部温度降至861.2℃;棒材离开湍流式冷却系统后,空冷3 s时表面温度升至792.6℃。生产应用结果表明,棒材进行普通冷却后的强度极限为310 MPa,用湍流式3段冷却后棒材的强度极限达410 MPa。  相似文献   

11.
12.
This paper presents an experimental and numerical investigation of consolidation-induced solute transport. Diffusion and large strain consolidation tests were performed on composite specimens of kaolinite clay consisting of an upper uncontaminated layer and a lower layer contaminated with potassium bromide. Experimental measurements of effluent concentration, solute mass outflow, and final concentration profiles were obtained for a variety of initial, boundary, and loading conditions, including unload/reload. Numerical simulations were conducted using a computational model in which solute transport occurs by advection, dispersion, and sorption and is consistent with temporal and spatial variations of porosity and seepage velocity in the consolidating layer. Large strains were taken into account as well as variation of effective diffusion coefficient with porosity and nonlinear nonequilibrium sorption effects. The numerical simulations are in good to excellent agreement with the experimental measurements. Results indicate that, depending on conditions, diffusion and consolidation-induced advection can make important contributions to solute transport and mass outflow. Thus, both mechanisms should be considered for transport analyses involving soft contaminated clays undergoing large volume change. Results also indicate that nonequilibrium sorption effects were not significant for the materials and test conditions used in this study.  相似文献   

13.
GCr15轴承钢棒材连轧过程温度场数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
建立了GCr15轴承钢(0.99%C、1.47%Cr)160 mm×160 mm方坯经粗轧、一中轧、二中轧、KOCKS轧机轧成Φ25.0 mm和Φ35.0 mm的轧件温度场预测模拟系统;研究了轧件轧制过程中温度的变化,一中轧入口轧制速度(0.55 m/s和1.1 m/s)对轧制过程轧件温度的影响,以及轧后冷却工艺(2段式和3段式快冷)对轧件温度的影响。结果表明,轧件温度的计算值和实测值的相对误差≤3%。  相似文献   

14.
A general-purpose numerical method is developed for solving the full three-dimensional (3D), incompressible, unsteady Reynolds-averaged Navier-Stokes (URANS) equations in natural river reaches containing complex hydraulic structures at full-scale Reynolds numbers. The method adopts body-fitted, chimera overset grids in conjunction with a grid-embedding strategy to accurately and efficiently discretize arbitrarily complex, multiconnected flow domains. The URANS and turbulence closure equations are discretized using a second-order accurate finite-volume approach. The discrete equations are integrated in time via a dual-time-stepping, artificial compressibility method in conjunction with an efficient coupled, block-implicit, approximate factorization iterative solver. The computer code is parallelized to take full advantage of multiprocessor computer systems so that unsteady solutions on grids with 106 nodes can be obtained within reasonable computational time. The power of the method is demonstrated by applying it to simulate turbulent flow at R ? 107 in a stretch of the Chattahoochee River containing a portion of the actual bridge foundation located near Cornelia, Georgia. It is shown that the method can capture the onset of coherent vortex shedding in the vicinity of the foundation while accounting for the large-scale topographical features of the surrounding river reach.  相似文献   

15.
A practical method is presented for modeling of two-dimensional arbitrary shape aggregates. An efficient algorithm is developed for mass concrete whose aggregate content reaches 60–70%. All the same kind of random triangular fundamental aggregates are generated at one time, then the two-dimensional arbitrary shape aggregates are generated by the method of random extension. The presented algorithm is superior to common methods, in which all aggregates are generated one by one. This algorithm avoids the inefficiency and low aggregate content of other algorithms. Corresponding software 2D-RAS is developed on the basis of this algorithm. And by means of this software, behaviors of the three-grading concrete specimens under uniaxial tension and bending are studied. The effect of shape of aggregates on mechanical behaviors of concrete is preliminarily investigated. The results indicate that critical load capacity of specimens with random circular aggregate is greater than that of the specimen with arbitrary polygonal aggregate. The cracking depth of the specimen with random arbitrary shape aggregate is larger than that of the specimen with circular aggregate.  相似文献   

16.
A numerical model was developed to simulate the response of two instrumented, centrifuge model tests on soft clay and to investigate the factors that affect the seismic ground response. The centrifuge tests simulated the behavior of a rectangular building on 30?m uniform and layered soft soils. Each test model was subjected to several earthquakelike shaking events at a centrifugal acceleration level of 80g. The applied loading involved scaled versions of an artificial western Canada earthquake and the Port Island ground motion recorded during the 1995 Kobe Earthquake. The centrifuge model was simulated with the three-dimensional finite-difference-based fast Lagrangian analysis of continua program. The results predicted with the use of nonlinear elastic–plastic model for the soil are shown to be in good agreement with measured acceleration, soil response, and structural behavior. The validated model was used to study the effect of soil layering, depth, soil–structure interaction, and embedment effects on foundation motion.  相似文献   

17.
A three-dimensional computational method, without the use of hydrostatic assumption, is developed to solve fluid flows for hydraulic applications. Numerical algorithms and verification of the nonhydrostatic model are described in our companion paper. The model employs unstructured grid technology with arbitrarily shaped cells, offering the potential to unify many grid topologies into a single formulation. Herein, the model is applied to two practical steady hydraulic flows to provide further validation of the model and demonstrate its use in practical flows. The flows in a hydroturbine draft tube and in the forebay of Rocky Reach Dam for the fish passage facility design are simulated. Comparisons with experimental data in the former and physical and field measurements in the latter establish the scope of the model.  相似文献   

18.
A chimera overset grid flow solver is developed for solving the unsteady Reynolds-averaged Navier-Stokes (RANS) equations in arbitrarily complex, multiconnected domains. The details of the numerical method were presented in Part I of this paper. In this work, the method is validated and applied to investigate the physics of flow past a real-life bridge foundation mounted on a fixed flat bed. It is shown that the numerical model can reproduce large-scale unsteady vortices that contain a significant portion of the total turbulence kinetic energy. These coherent motions cannot be captured in previous steady three-dimensional (3D) models. To validate the importance of the unsteady motions, experiments are conducted in the Georgia Institute of Technology scour flume facility. The measured mean velocity and turbulence kinetic energy profiles are compared with the numerical simulation results and are shown to be in good agreement with the numerical simulations. A series of numerical tests is carried out to examine the sensitivity of the solutions to grid refinement and investigate the effect of inflow and far-field boundary conditions. As further validation of the numerical results, the sensitivity of the turbulence kinetic energy profiles on either side of the complex pier bent to a slight asymmetry of the approach flow observed in the experiments is reproduced by the numerical model. In addition, the computed flat-bed flow characteristics are analyzed in comparison with the scour patterns observed in the laboratory to identify key flow features responsible for the initiation of scour. Regions of maximum shear velocity are shown to correspond to maximum scour depths in the shear zone to either side of the upstream pier, but numerical values of vertical velocity are found to be very important in explaining scour and deposition patterns immediately upstream and downstream of the pier bent.  相似文献   

19.
Large-scale coherent vortical structures in natural streams and rivers dominate flow and transport processes and impact the stability of stream banks, the diversity and abundance of organisms, and the quality of running waters in aquatic ecosystems. Thus, understanding and being able to model the dynamics of energetic coherent structures in such flows at ecologically relevant scales are crucial prerequisites for developing a science-based ecosystem restoration framework. We review recent progress toward the development of coherent-structure-resolving (CSR) computational fluid dynamics techniques, based on hybrid URANS/LES modeling strategies, for simulating turbulent flows in open-channels with hydraulic structures. CSR simulations of the turbulent horseshoe vortex (THSV) past bed-mounted piers explained the physical mechanism leading to the experimentally documented bimodal velocity fluctuations of the vortex and underscored the importance of the Reynolds number as a key parameter governing the THSV dynamics. Simulations of high Reynolds number flows past surface-piercing, groynelike structures in open channels revealed the complexity of the recirculating region at the upstream face of the groyne, underscored the interaction of the flow in this region with the energetic shear layer shed from the point of separation at the upstream side wall, and demonstrated the importance of flow depth in the vorticity dynamics of such flows. The paper also identifies areas for future work and modeling challenges that need to be addressed for the computational tools to be able to accurately predict flow and transport processes in real-life aquatic environments.  相似文献   

20.
A depth-integrated numerical model GP_Rain was developed to calculate the behavior of neutrally buoyant, highly soluble gases subjected to scavenging by rain. A neutrally buoyant release of hydrogen fluoride is used to illustrate the use of the model. The GP_Rain model was developed in two steps. The part without rain scavenging is based on AFTOX, a Gaussian puff/plume model. Then a first-order decay term for rain scavenging, which was developed by assuming a homogeneous rain field, was added to the concentration calculation for the puff. The model can predict the maximum release distance for a certain concentration limitation and a two-dimensional plume with or without rain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号