首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The DNA-dependent protein kinase (DNA-PK) complex is composed of a catalytic (DNA-PKcs), and a regulatory subunit (Ku70/Ku86 heterodimer). The expression and function of DNA-PK subunits was investigated in purified blood lymphocytes obtained from patients with chronic lymphocytic leukemia (CLL) either refractory to chemotherapy or untreated. Variations in DNA-PK activity were found amongst CLL samples by comparison to human cell lines. It was noticeable that the low DNA-PK activity was associated with samples from untreated patients that exhibited a sensitivity phenotype, determined in vitro, to the radiomimetic agent neocarcinostatin by comparison to samples from refractory patients. The regulation in DNA-PK activity was associated with Ku heterodimer expression while DNA-PKcs was unaffected. Moreover, the presence of an altered form of the Ku86 subunit was identified in samples with low DNA-PK activity. These results suggest a regulation process of the DNA-PK activity in fresh human cells.  相似文献   

2.
3.
4.
Glucocorticoid-induced apoptosis was investigated in glucocorticoid-sensitive 6TG1.1 and resistant ICR27TK.3 human leukemic T cells. Following glucocorticoid treatment of 6TG1.1 cells, chromatin fragmentation was observed after a delay of 24 h. Fragmentation was not observed in ICR27TK.3 cells containing mutant glucocorticoid receptors (L753F) that are activation-deficient but retain the ability to repress AP-1 activity. Nor was fragmentation observed after treatment with RU38486, indicating that repression of AP-1 activity is not involved. As described in other systems, fragmentation required ongoing protein synthesis. However, inhibition of protein synthesis with cycloheximide anytime during the first 18 h of steroid treatment was as effective in blocking chromatin fragmentation as inhibition for the entire period, suggesting that synthesis of a component with a rapid turnover rate is required. Dexamethasone treatment completely blocked 12-O-tetradecanoylphorbol 13-acetate induction of nuclear factor-kappaB (NF-kappaB) activity and elicited an increase in the amount of immunoreactive IkappaB alpha in sensitive 6TG1.1 cells but not in resistant ICR27TK.3 cells. In addition, mild detergent treatment of cell extracts indicated that a substantial amount of cytoplasmic NF-kappaB is complexed with IkappaB alpha or some other inhibitory factor. These results suggest that induction of a labile inhibitory factor such as IkappaB alpha may contribute to glucocorticoid-induced apoptosis.  相似文献   

5.
6.
7.
8.
9.
Growth and differentiation of normal myeloid haematopoietic cells are regulated by a family of macrophage- and granulocyte-inducing (MGI) proteins. Some of these proteins (MGI-1) induce cell growth and others (MGI-2) induce cell differentiation. Addition of MGI-1 to normal myeloid cells induces growth and also induces the endogenous production of MGI-2. This induction of differentiation-inducing protein by growth-inducing protein then ensures the coupling between growth and differentiation found in normal cells. There are myeloid leukemic cells that constitutively produce their own MGI-1, but the cells do not differentiate in culture medium containing horse or calf serum. By removing serum from the medium, or in medium with mouse or rat serum, these leukemic cells are induced to differentiate to mature cells, which like normal mature cells, then no longer multiply. Leukemic cells with constitutive production of MGI-1 continuously cultured in serum-free medium with transferrin were also induced to differentiate by removing transferrin. This induction of differentiation was in all these cases associated with the endogenous production of MGI-2 by the cells. The results indicate that changes in specific constituents of the culture medium can result in autoinduction of differentiation in these leukemic cells due to restoration of the induction of MGI-2 by MGI-1, which then restores the normal coupling of growth and differentiation.  相似文献   

10.
11.
OBJECT: Tamoxifen (TAM) has been found to be effective in inhibiting proliferation of glioblastoma cells in vitro, but clinical studies have been disappointing. The purpose of this study was to determine whether insulin-like growth factor I (IGF-I), a potential autocrine/paracrine mitogen produced by glioblastomas, interferes with the antimitogenic actions of TAM. METHODS: Human glioblastoma cells were treated with or without TAM and/or IGF-I in vitro and evaluated for: viability by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenol tetrazolium bromide cleavage assay; apoptosis by histochemical analysis of nuclear morphology and 3'-OH DNA fragments; and expression of the IGF-I receptor, and the bcl-2, bcl-xL, and bax proteins by immunoblot analysis. In addition, p53 status was determined by DNA sequencing and by transient transfection with luciferase reporter plasmids containing wild-type or mutant p53. Results indicated that after 72 hours of exposure to 2 mg/ml TAM in vitro, 56.3% of WITG3 and 43.8% of U87-MG glioblastoma cells contained apoptotic nuclei (p < 0.01 compared with untreated cells). Apoptosis was independent of the presence of p53 because the WITG3 cells, in contrast to the U87-MG cells, expressed a mutant, nonfunctional p53. The WITG3 cells expressed IGF-I receptor proteins and demonstrated IGF-I binding. Exogenous IGF-I stimulated WITG3 cell proliferation and significantly (p < 0.05) antagonized the cytotoxic effects of TAM in a dose-dependent fashion; IGF-I, but not TAM, enhanced expression of bcl-2 and bcl-xL proteins; however, bax protein expression was unchanged by either treatment. CONCLUSIONS: Because many gliomas secrete large amounts of IGF-I in autocrine/paracrine growth pathways, these data may, in part, explain the failure of TAM to achieve clinical results as dramatic as those in vitro.  相似文献   

12.
13.
The induction of apoptosis by topoisomerase I inhibitors, camptothecin and SN38, was evaluated in drug-sensitive HL60 and multidrug-resistant (MDR) HL60-Vinc leukemic cells. MDR cells displayed a partial resistance to these apoptotic stimuli and this phenomenon was not modulated by verapamil. Basal free calcium concentrations were similar in both cell sublines and were not modified during treatment. Cytoplasmic pH was more acidic in sensitive cells than in MDR cells. Moreover, a significant acidification was obtained during the early stage of apoptosis in sensitive HL60 cells only. Basal Bcl-2 protein expression was found to be greater in MDR than in sensitive cells and was not modulated by apoptosis inducers. This increase of Bcl-2 in MDR cells could be due to the selection process as vincristine enhances Bcl-2 phosphorylation and expression in HL60 sensitive cells. MDR HL60-Vincristine cells therefore display a resistance to apoptosis induced by non-MDR drugs, possibly by Bcl-2 overexpression and inability of these drugs to mediate intracellular pH changes in these drug-resistant cells.  相似文献   

14.
15.
The effect of genetic context on splicing of group I introns is not well understood at present. The influence of ribosomal RNA conformation on splicing of rDNA introns in vivo was investigated using a heterologous system in which the Tetrahymena group I intron is inserted into the homologous position of the Escherichia coli 23S rRNA. Mutations that block splicing in E. coli result in accumulation of unspliced 23S rRNA that is assembled into 50S complexes, but not 70S ribosomes. The data indicate that accommodation of the intron structure on the surface of the 50S subunit inhibits interactions with the small ribosomal subunit. Spliced intron RNA also remains noncovalently bound to 50S subunits on sucrose gradients. This interaction appears to be mediated by base pairing between the intron guide sequence and the 23S rRNA, because the fraction of bound intron RNA is reduced by point mutations in the IGS or deletion of the P1 helix. Association of the intron with 50S subunits correlates with slow cell growth. The results suggest that group I introns have the potential to inhibit protein synthesis in prokaryotes by direct interactions with ribosomes.  相似文献   

16.
17.
Human leukemic cell line K562 is induced to differentiate into the megakaryocytic lineage by stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA). We demonstrate here that TPA stimulation increases tyrosine phosphorylation of an 80-kDa protein at an early stage of megakaryocytic differentiation and that this 80-kDa protein is identical with cortactin. Since tyrosine kinase Syk was activated by TPA stimulation, we examined the possibility that cortactin is a potential substrate of Syk in K562 cells. TPA-induced tyrosine phosphorylation of cortactin was decreased profoundly by overexpression of dominant-negative Syk. Furthermore, cortactin was associated with Syk even before TPA stimulation. Since cortactin was previously referred as an 80/85-kilodalton pp60src substrate, we examined the association between Src and cortactin, whereas its association could not be detected. These data suggest that Syk phosphorylates cortactin in K562 cells upon TPA treatment.  相似文献   

18.
19.
Osteoblast-like UMR-106.01 rat osteosarcoma cells express high affinity growth hormone (GH) receptors (GHRs). Because osteoblasts secrete insulin-like growth factor binding protein-5 (IGFBP-5), we evaluated whether it also modulates GH binding and GHR expression in UMR cells. Human recombinant intact IGFBP-5 stimulated 125I-hGH binding in a dose-dependent manner (dose range 300-3000 ng/ml), inducing an increase to 193.6 +/- 2.1% of control binding at 3000 ng/ml (P < 0.001). Carboxy-truncated IGFBP-5 also stimulated GH binding but with less potency (125 +/- 2.7% of control at 3000 ng/ml, P < 0.01). GHRs identified by chemical crosslinking of 125I-hGH to cell monolayers increased after treatment with IGFBP-5 and decreased in response to insulin-like growth factor-I (IGF-I). GHR mRNA levels, as quantitated by a solution hybridization RNAse protection assay, increased up to 3 to 7-fold in a time-dependent manner by intact IGFBP-5 but not by carboxy-truncated IGFBP-5. An antiserum to IGFBP-5 reduced basal GH binding to 56.7 +/- 4.3% of control value at a concentration of 0.5% (P < 0.001), showing that IGFBP-5 produced by the cells is a strong regulator of GH binding. IGFBP-5 antiserum also decreased GH binding to 85.9 +/- 0.9% of IGFBP-5 stimulated value (P < 0.001), showing the specificity of IGFBP-5 stimulation. To determine whether the GHR upregulation was physiologically significant, cell proliferation was evaluated after coincubation of IGFBP-5 with low, non-stimulatory concentrations of GH. IGFBP-5 (1000 ng/ml) induced cell proliferation to 116.2 +/- 3.2% of control levels, and coincubation with hGH at 10 ng/ml induced an increase to 133.3 +/- 0.1% of control levels. We conclude that exogenous and endogenous IGFBP-5 upregulate GHR mRNA levels and GH binding and this interaction potentiates GH-stimulated mitogenesis in osteoblastic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号