首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
LY12—CZ和LC4—CS铝合金在多种环境中的腐蚀疲劳裂纹扩展   总被引:2,自引:1,他引:1  
文中对两种常用铝合金LY12—CZ和LC4—CS在各种环境中的疲劳裂纹扩展速率与实验室空气中的数据进行了比较,揭示了不同的腐蚀环境对疲劳裂纹扩展速率的影响。腐蚀环境的参加使两种铝合金的裂纹扩展速率明显加快,其影响的严重程度由重到轻依次为:盐水,盐雾,盐雾+SO_2,潮湿空气。LC4—CS合金比LY12—CZ合金对环境因素表现更为敏感,其疲劳裂纹扩展抗力在腐蚀环境中的降低更为显著。  相似文献   

2.
通过研究定向有机玻璃(YB-DM-10)疲劳裂纹扩展性能,得到该种定向有机玻璃疲劳断裂阈值。发现其疲劳裂纹扩展速率曲线遵循Pairs公式以及Walker公式。研究平面内不同角度、不同频率和应力比对疲劳裂纹扩展的影响;通过对比Paris公式以及Walker公式的回归系数以及断裂表面不同阶段的扫描图像,分析不同参数对疲劳裂纹扩展的影响。结果表明:材料板材平面内,不同切割角度的试样疲劳裂纹扩展速率基本相同;加载频率对疲劳裂纹扩展速率影响不大,但在da/d N-ΔK曲线的第三阶段,数据有分离的趋势;相同的ΔK情况下,应力比增大,疲劳裂纹扩展速率增加。本工作结果为该种定向有机玻璃的应用以及航空座舱透明件损伤容限性能研究奠定了基础。  相似文献   

3.
基于编制的机场环境加速试验谱,针对关键结构高强度铝合金件进行当量腐蚀试验,在实验室条件下成功地模拟和再现了服役环境条件的腐蚀损伤,借助复型法观测得到了腐蚀损伤的演化规律;通过预腐蚀疲劳试验和疲劳断口扫描电镜定量分析,得到了裂纹长度a与循环次数N数据集,分析了裂纹扩展速率da/d N与应力强度因子幅值ΔK的对应关系,定量表征了不同程度腐蚀损伤对疲劳裂纹扩展行为的影响规律.结果表明,在腐蚀初期,疲劳裂纹扩展过程中有经典的小裂纹扩展阶段;随着腐蚀损伤的加重,小裂纹行为不明显;腐蚀损伤越严重,疲劳裂纹扩展速率越快,结构抗疲劳性能显著退化.  相似文献   

4.
复合材料对LY12CZ铝合金C-环应力腐蚀性能的影响   总被引:1,自引:0,他引:1  
采用铝合金C-环试样应力腐蚀试验方法,将碳纤维环氧复合材料与LYl2CZ铝合金相互偶接,研究由于电偶腐蚀的存在,对LYl2CZ铝合金应力腐蚀性能的影响,利用SEM方法对裂纹断口进行了分析。结果表明,复合材料与LYl2CZ铝合金的电偶腐蚀作用,促进了LYl2CZ铝合金C-环应力腐蚀裂纹形成与扩展,电偶作用使晶粒表面的点蚀减少,晶界腐蚀的溶解速率明显加快,晶界的二次裂纹大大增加,而与铝合金偶接的复合材料表面形貌基本无变化。  相似文献   

5.
针对7475-T761航空铝合金中心开裂(MT)试样进行了不同温度、不同应力比条件下的一系列疲劳裂纹扩展试验,得到了相应试验条件下的疲劳裂纹扩展数据与规律,讨论了应力比、环境温度对疲劳裂纹扩展行为的影响,并利用扫描电镜(SEM)观测分析了疲劳断口。结果表明:7475-T761铝合金疲劳裂纹扩展速率随应力比、温度的增加而增加;消除裂纹闭合效应影响后,相同温度不同应力比下的da/dN-ΔKeff可由同一拟合公式描述;高温时弹性模量和材料抗拉强度的下降以及裂纹表面氧化导致裂纹扩展速率较快;对比不同条件下稳定扩展区疲劳条带宽度验证了试验分析结论。  相似文献   

6.
基于增量塑性损伤理论与纤维增强金属层板疲劳裂纹扩展唯象方法, 推导出在拉-压循环加载下, 纤维增强金属层板疲劳裂纹扩展速率预测模型。并通过玻璃纤维增强铝合金层板在应力比R=-1,-2的疲劳裂纹扩展实验对预测模型进行验证。结果表明, 纤维增强铝合金层板疲劳裂纹扩展的压载荷效应分为两种情况: 在有效循环应力比RC>0时, 表现为压载荷对铝合金层所承受残余拉应力的抵消作用; 当RC<0时, 表现为压载荷抵消残余拉应力后, 对纤维增强铝合金层板金属层的塑性损伤, 对疲劳裂纹扩展存在促进作用。纤维铝合金层板疲劳裂纹扩展的压载荷效应不可忽略, 本文中得出的在拉-压循环加载下疲劳裂纹扩展速率预测模型与实验结果符合较好。  相似文献   

7.
沙宇  张嘉振  白士刚  周振功 《工程力学》2012,29(10):327-334
应用弹塑性有限元方法与增量塑性损伤理论指出疲劳裂纹扩展的压载荷效应是裂纹尖端塑性损伤的结果, 建立了在拉-压循环加载下铝合金疲劳裂纹扩展速率的双参数预报模型, 对LY12-M 高强铝合金MT 试件在应力比R=0、-0.5、-1、-2 进行了疲劳裂纹扩展实验。结果表明:当最大应力强度因子Kmax相同时, 恒幅拉压加载(应力比R<0)的疲劳裂纹扩展速率明显高于恒幅拉拉加载(应力比R=0)的情况, 拉-压循环载荷的压载荷部分对疲劳裂纹扩展速率具有促进作用。该文得出的LY12-M 铝合金在拉-压循环加载下的疲劳裂纹扩展速率预报模型与实验结果符合较好。  相似文献   

8.
针对不同厚度7050铝合金试样进行了不同应力比条件下的一系列疲劳裂纹扩展试验,并运用遗传规划算法对疲劳裂纹扩展寿命进行预测。遗传规划算法是模拟自然界中生物的进化策略,通过交换、突变等遗传操作,搜索目标的最优解。建立7050铝合金疲劳裂纹扩展速率的遗传规划模型,并利用试验数据对模型进行测试,后与其他典型疲劳裂纹扩展模型进行比较。研究结果表明:GP模型预测的7050铝合金疲劳裂纹扩展寿命结果与试验值基本吻合,相对误差小于1.5%,且GP模型预测结果的准确性高于Paris模型和Walker模型。  相似文献   

9.
Ti-6Al-4V钛合金的疲劳裂纹扩展规律   总被引:1,自引:0,他引:1  
针对熔模铸造Ti-6Al-4V钛合金的等幅疲劳裂纹扩展速率和疲劳裂纹扩展门槛值进行了研究。结果表明:该钛合金CT试样的疲劳裂纹扩展门槛值高于CCT试样的疲劳裂纹扩展门槛值,同一类试样的疲劳裂纹扩展门槛值随着应力比的增加呈下降趋势;疲劳裂纹扩展速率随着平均应力的增加以及应力水平的增加而增大;根据疲劳裂纹扩展试验数据拟合了Ti-6Al-4V钛合金Paris方程和Walker方程中的相关材料参数,以为材料的使用寿命评估及损伤容限设计提供参考。  相似文献   

10.
腐蚀环境下2E12航空铝合金疲劳裂纹扩展行为研究   总被引:1,自引:0,他引:1  
采用SEM,TEM及疲劳性能测试等分析测试手段,系统地研究了2E12铝合金在室温空气、潮湿气体及盐雾环境下的疲劳裂纹扩展速率。结果发现2E12合金具有良好的疲劳性能,疲劳裂纹扩展速率优于国外的2524铝合金。利用修正的Paris公式分析腐蚀介质对合金的疲劳裂纹扩展性能影响轻重程度依次为;室温空气〈潮湿气体〈盐雾环境。不同环境条件下合金的疲劳裂纹形貌均表现微观裂纹扩展的晶界小平面、宏观裂纹扩展的疲劳条纹以及剪切撕裂的微观结构。在腐蚀环境下,宏观裂纹扩展表现出更多的脆性裂纹扩展特征,氢脆导致塑性区脆化及腐蚀诱导的阳极溶解是导致裂纹扩展性能降低的原因。  相似文献   

11.
The paper studies the effects of artificial corrosion pits and complex stress fields on the fatigue crack growth of full penetration load‐carrying fillet cruciform welded joints with 45° inclined angle. Parameters of fatigue crack growth rate of welded joints are obtained from SN curves under different levels of corrosion. A numerical method is used to simulate fatigue crack growth using different mixed mode fatigue crack growth criteria. Using polynomial regression, the crack shape correction factor of welded joints is fitted as a function of crack depth ratios. Because the maximum circumferential stress criterion is simple and easy to use in practice, fatigue crack growth rate is modified using this criterion. The relationship of effective stress intensity factor, crack growth angle and crack depth is studied under different corrosion levels. The simulated crack growth path obtained from the numerical method is compared with the actual crack growth path observed by fatigue tests. The results show that fatigue cracks do not initiate at the edge or bottom of pits but at the weld toes where the maximum stress occurs. The artificial corrosion pits have little effect on the effective stress intensity factor ranges and crack growth angle. The fatigue crack growth rates of welded joints with pits 1 and 2 are 1.15 times and 1.40 times larger than that of the welded joint with no pit, respectively. The simulated crack growth path agrees well with the actual one. The fatigue life prediction accuracy using the modified formulation is improved by about 18%. The crack shape correction factor obtained using the maximum circumferential stress criterion is recommended being used to calculate fatigue life.  相似文献   

12.
The effects of cathodic protection potential, corrosion products and stress ratio on corrosion fatigue crack growth rate have been studied on offshore structural steels. These materials were cathodically polarised in seawater and 3% sodium chloride solution at three potentials of -0.8, -1.0 and -1.1 V(SCE). The corrosion fatigue crack growth rate in seawater was greater than that in air and increased with more negative potentials. The maximum acceleration of crack growth rate in seawater was observed at the crack growth plateau which was independent of ΔK. Calcareous deposits precipitated within the cracks resulted in an increase of crack opening level and contributed to a reduction of the corrosion fatigue crack growth rate. Such a corrosion-product-wedging effect could be evaluated by using an effective stress intensity range, ΔKeff. The estimation of corrosion fatigue crack growth rate in terms of ΔKeff clarified the effect of hydrogen embrittlement under a cathodic potential. Thus the processes of cracking in seawater at cathodic potentials resulted from mechanical fatigue and hydrogen embrittlement with calcareous deposits reducing the crack growth rate. All these three mechanisms were mutually competitive.  相似文献   

13.
THE GROWTH OF SMALL CORROSION FATIGUE CRACKS IN ALLOY 2024   总被引:4,自引:0,他引:4  
Abstract— The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminium alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by: (1) crack initiation at constituent particle pits, (2) intergranular microcracking for a≤100μm, and (3) transgranular small crack growth for a≥100μm. In aqueous 1% NaCl and at a constant anodic potential of −700 mVSCE, small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of Δ K (< 1 MPa√m) below the long crack Δ K th value. When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Similar small and long crack growth behavior at various levels of R suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks for a≥100 μm. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for alloy 2024 exposed to salt water.  相似文献   

14.
The investigation of fatigue damage in corrosive environments is an important problem, because such environments reduce fatigue strength far below the typical fatigue strength determined in air. In this study, rotating bending fatigue tests of plain specimens in NaCl solution were carried out using a heat-treated 0.45% carbon steel, in order to clarify the physical background of corrosion fatigue damage. The emphasis is to perform the successive observations by the plastic replica method. The results show that corrosion pits are generated at the early stages of cycling, then most of them grow with further cycling until a crack is initiated from each corrosion pit. The initiation of corrosion pits from slip bands is only observed in the case when the stress range is relatively large, in the range of stress under which slip bands are produced in air. After initiation of a crack, a crack propogates by accompanying frequent interaction and coalescence with other cracks. The growth rate of an especially small crack in NaCl solution is larger than that in air. However, the growth rate of a comparatively large crack is smaller in NaCl solution than in air. Moreover, the statistical characteristics of corrosion fatigue behavior were investigated by exhibiting the distributions of crack initiation life and crack length.  相似文献   

15.
Corrosion fatigue behaviour of a medium strength structural material was studied in air and in 3.5% NaCl solution. Emphasis was placed on the study of corrosion pit formation and the development of cracks from pits. Pitting and crack propagation were quantified throughout the fatigue loading thereby allowing a model to be developed that included the stages of pitting and the pit-to-crack transition in order to predict the fatigue life. The results showed that a large number of corrosion pits with small size form at a very early stage in the fatigue lifetime. The number of pits and subsequent cracks was found to be higher at higher stress levels leading to multiple crack development and coalescence. When compared to air, fatigue life in a corrosive environment was significantly reduced at low stress levels due to pitting damage, indicating a dominant role of corrosion over that of mechanical effects. The corrosion fatigue model proposed shows good agreement with the experimental test data at lower stress levels but predicts more conservative lifetimes as the stress increases. Kitagawa–Takahashi diagram was produced for both test environments where it is indicated that the fatigue limit can be eliminated in a corrosive environment.  相似文献   

16.
在某已服役了16 a的30Cr1Mo1V钢汽轮机转子的高应力段取样制作成紧凑拉伸试样,用MTS 810.50试验机进行室温和538℃下的疲劳裂纹扩展速率试验。结果表明:该钢疲劳裂纹稳定扩展阶段的疲劳裂纹扩展速率适用于Paris公式,室温下的疲劳裂纹扩展速率方程为da/dN=2.2101×10-8(ΔK)2.9163,538℃下的疲劳裂纹扩展速率方程为da/dN=9.8794×10-8(ΔK)2.6844;对于30Cr1Mo1V转子钢,温度升高,疲劳裂纹扩展速率加快;30Cr1Mo1V转子钢在疲劳裂纹稳定扩展阶段存在转折点,将该阶段又细分为两段,经过转折点后疲劳裂纹扩展速率的增速减慢;与原始材料相比,已服役16 a的30Cr1Mo1V钢汽轮机转子高应力段材料的疲劳裂纹扩展速率增大。  相似文献   

17.
Abstract— The objective of this work is to study the delamination growth behaviour of hybrid composite-aluminium bonded laminates. A modified Double Crack Lap Shear (DCLS) specimen was chosen for this study. An expression relating the delamination size and the compliance of a DCLS specimen was derived, and a test method for the delamination growth rate in DCLS specimens developed. The delamination sizes and the delamination growth rates of DCLS specimens were determined by monitoring the compliances of specimens during fatigue. Delamination growth rates at different stress ratios ( R = 0.1, 0.3,0.5) were measured. A Walker-type equation for the delamination growth rate was obtained by a multiple linear regression analysis.
It was shown that the compliance method for determining the delamination growth rate of DCLS specimens is not only convenient and practical, but also accurate. The delamination size in DCLS specimens increases linearly with cycles during fatigue, i.e. delamination growth rate is constant, independent of delamination size. The energy release rate was adopted to characterize delamination growth behaviour. Good agreement between the Walker equation and test results of the delamination growth rate was found.  相似文献   

18.
Experimental data were obtained using AISI 4130 steel under stress ratios of –1 and 0. A study of cumulative fatigue damage using Miner's and Kramer's equations for stress ratios of –1 and 0 for low-high, low-high-mixed, high-low, and high-low-mixed stress sequences has revealed that there is a close agreement between the theoretical and experimental values of fatigue damage and fatigue life. Kramer's equation predicts less conservative and more realistic cumulative fatigue damage than the popularly used Miner's rule does.  相似文献   

19.
Abstract— When estimating fatigue damage quantitatively it is important to clarify its physical basis. In this study, rotating bending fatigue tests of a heat-treated 0.45% carbon steel were carried out in 3% NaCl solution, in order to clarify the physical basis of corrosion fatigue damage from successive observations of plastic replicas. The results show that corrosion pits are generated during the early stages of cycling, then most of them grow with further cycling until a crack is initiated from each corrosion pit. The initiation of corrosion pits from slip bands is observed only in the case when the stress range is relatively large, and in the range of stress for which slip bands are produced in air. After initiation of a crack, the crack propagates by frequent interactions and coalescence with other cracks. The growth rate of an especially small crack in NaCl solution is larger than that in air. However, the growth rate of a comparatively large crack is smaller in NaCl solution than in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号