首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effect of hydrogen peroxide on the photocatalytic degradation of organic contaminants in water was investigated using a TiO2-rotating disk photocatalytic reactor (RDPR) operated in a continuous-mode and at steady state. The experiments were performed at pH 3.0, in the presence of near-UV radiation, and using 4-chlorobenzoic acid (4-CBA) as a model non-volatile organic contaminant at influent concentration of 300 μmol l−1. Experiments were performed at concentrations of hydrogen peroxide in the range 0–10.74 mmol l−1. Addition of hydrogen peroxide at small concentrations (<2 mmol l−1) had a synergistic effect and increased considerably the rates of photocatalytic reactions. An optimum influent hydrogen peroxide concentration was observed at 1.6 mmol l−1, which caused an increased in the rates of 4-CBA degradation and total organic carbon (TOC) mineralization by 1.72 and 2.13 times, respectively. This corresponded to an optimum oxidant to contaminant molar ratio of 5.33. At higher concentrations, hydrogen peroxide was found to cause an inhibiting effect on the photocatalytic reactions. The synergistic and inhibiting effects of hydrogen peroxide were rationalized based on the reaction rate constants between relevant radical species.  相似文献   

2.
The photocatalytic decolorization of adsorbed organic dyes (Acid Blue 9, Acid Orange 7, Reactive Black 5 and Reactive Blue 19) in air was examined, applicable to self-cleaning surfaces and catalyst characterization. Dye-coated Degussa P25 titanium dioxide (TiO2) and dye-coated photo-inert aluminum oxide (Al2O3) particles, both of sub-monolayer initial dye coverage, were illuminated with 1.3 mW cm−2 of near-UV light. Visual evidence of color removal is reported with photographic images. Two methods, Indirect and Direct Analysis, were employed to quantitatively examine the decolorization kinetics of dyes using UV–visible transmission and diffuse reflectance spectroscopy, respectively. A decrease in dye concentration with time was observed with near-UV illumination of dye-coated TiO2 powders for all dyes. Dyes did not photodegrade significantly on photo-inert Al2O3.

UV–visible spectroscopy data was used to model the kinetics of the photocatalytic degradation. Two first-order reactions in series provided the most convincing rate form for the photodegradation of dyes adsorbed to TiO2, with a first step the conversion of colored dye to colored intermediate, and the second the conversion to colorless product(s). The first rate constant was of similar magnitude for all dyes, averaging k1 = 0.13 min−1. Similarly, for the second, k2 = 0.0014 min−1.  相似文献   


3.
Decolorization of reactive brilliant red X-3B was studied by using an Fe–Ce oxide hydrate as the heterogeneous catalyst in the presence of H2O2 and UV. The decolorization rate was in the order of UV–Fe–Ce–H2O2 > UV–Fe3+–H2O2 > UV–H2O2 > UV–Fe–Ce ≥ Fe–Ce–H2O2 > Fe–Ce. Under the conditions of 34 mg l−1 H2O2, 0.500 g l−1 Fe–Ce, 36 W UV and pH 3.0, 100 mg l−1 X-3B could be decolorized at efficiency of more than 99% within 30 min. The maximum dissolved Fe during the reaction was 1 mg l−1. From the fact that the decolorization rate of the UV–Fe–Ce–H2O2 system was significantly higher than that of the UV–Fe3+–H2O2 system at Fe3+ = 1 mg l−1, it is clear that the Fe–Ce functioned mainly as an efficient heterogeneous catalyst. UV–vis, its second derivative spectra, and ion chromatography (IC) were employed to investigate the degradation pathway. Fast degradation after adsorption of X-3B is the dominant mechanism in the heterogeneous catalytic oxidation system. The first degradation step is the breaking down of azo and CN bonds, resulting in the formation of the aniline- and phenol-like compounds. Then, the breaking down of the triazine structure occurred together with the transformation of naphthalene rings to multi-substituted benzene, and the cutting off of sulphonic groups from the naphthalene rings. The last step includes further decomposition of the aniline structure and partial mineralization of X-3B.  相似文献   

4.
Pure Fe and Fe/Cr alloys (3% and 12% Cr) were oxidized at 250–260°C and subsequently electrochemically reduced in borate buffer, pH 8.4. The reduction was followed by in situ Raman spectroscopy as well as chronopotentiometric and chronoamperometric measurements. At several time intervals ex situ Raman control investigations and ESCA analyses were undertaken. Although at −0.7 V vs sce partial reduction of the oxide film was observed, -Fe2O3 remained unchanged and reduced at −0.9 V. A mixture of spinel structured oxide, possibly Fe3O4, and a ferrous deposit were observed when the oxide film was galvanostatically reduced at 100 μA cm−2; after prolonged reduction the bare metal resulted. The thermally created oxide of the Cr alloy possessed an inner Cr rich layer which during the galvanostatic reduction of the oxide film at 50 μA cm−2 is most likely responsible for an increase in the overpotential of more than 80 mV.  相似文献   

5.
Heterogeneous catalysts based on magnetic mixed iron oxides (MO·Fe2O3; M: Fe, Co, Cu, Mn) were used for the decolorization of several synthetic dyes (Bromophenol Blue, Chicago Sky Blue, Cu Phthalocyanine, Eosin Yellowish, Evans Blue, Naphthol Blue Black, Phenol Red, Poly B-411, and Reactive Orange 16). All the catalysts decomposed H2O2 yielding highly reactive hydroxyl radicals, and were able to decolorize the synthetic dyes. The most effective catalyst FeO·Fe2O3 (25 mg mL−1 with 100 mmol L−1 H2O2) produced more than 90% decolorization of 50 mg L−1 Bromophenol Blue, Chicago Sky Blue, Evans Blue and Naphthol Blue Black within 24 h. The fastest decomposition proceeded during the first hour of the reaction. In addition to dye decolorization, all the catalysts also caused a significant decrease of chemical oxygen demand (COD). Individual catalysts were active in the pH range 2–10 depending on their structure and were able to perform sequential catalytic cycles with low metal leaching.  相似文献   

6.
Diffusion of ammonia and ammonium ions in sulphonic acid cation exchangers (gel Purolite SGC 100 × 10 MBH and macroporous Purolite C 160 MBH) from the solutions, representing the composition of “caustic condensate” (waste of nitrogen fertilizers production) is affected by pH of initial solution and structure of the matrix of cation exchanger. In gel matrix the effective intraparticle diffusivity (Def) depends greatly on the solution pH because of shrinkage in alkaline and swelling in acidic medium: on decreasing the initial concentration of ammonia from 0.214 to 0.003 and increasing that of ammonium nitrate from 0 to 0.214 mol l−1 instead, the effect of ion exchange leads to a decrease in pH, resulting in swelling and increase in Def from 0.1 to 0.34 × 10−10 for gel Purolite SGC 100 × 10 MBH and variation of 0.18–0.11 × 10−10 m2 s−1 for macroporous Purolite C 160 MBH (resistant to shrinkage and swelling).

In Purolite C 160 MBH both macropore diffusivity (0.07–0.29 × 10−10 m2 s−1) and gel (solid phase) diffusivity (0.06–0.19 × 10−10 m2 s−1) are higher than micropore diffusivity (0.28–0.56 × 10−18 m2 s−1).

With respect to the effective intraparticle diffusivity, resistance to nitric acid, used for the regeneration, and high concentration of ammonium nitrate in eluate (up to 110 g l−1), Purolite C 160 MBH has been installed for the conversion of ammonia and ammonium ions to ammonium nitrate reusable in the fertilizers production. This allows minimizing the economic loss and preventing the environmental contamination.  相似文献   


7.
Polymeric catalysts to be applied in the Diels–Alder cycloaddition of hexachlorocyclopentadiene and maleic acid have been prepared via molecular imprinting with template molecules immobilized on silica particles. These enzyme mimicking polymers exhibit specific catalytic effects compared to non-imprinted control polymers or polymer-free solutions. It could be demonstrated that the activity of the molecularly imprinted material rises when increasing the temperature. By this means, the reduction of the activation energy (as expected for catalysts) from 63 to 55 kJ mol−1 could be observed. Furthermore, the reaction was characterized based on the Michaelis–Menten model. For the diene compound a Michaelis constant of KM=5.8 mmol l−1 and an effective reaction rate of rmax,eff=0.4 μmol l−1 s−1, leading to a reaction rate constant keff=1.1×10−3 s−1, were determined.  相似文献   

8.
Dyes often include toxic,carcinogenic compounds and are harmful to humans' health.Therefore,removal of dyes from textile industry wastewater is essential.The present study aimed to evaluate the efficiency of the combination of zero valent iron(ZVI) powder and multi-walled carbon nanotubes(MWCNTs) in the removal of Reactive Red 198(RR198) dye from aqueous solution.This applied research was performed in a batch system in the laboratory scale.This study investigated the effect of various factors influencing dye removal,including contact time,p H,adsorbent dose,iron powder dose,initial dye concentration,and temperature.The equilibrium adsorption data were analyzed using three common adsorption models:Langmuir,Freundlich and Temkin.Besides,kinetic and thermodynamic parameters were used to establish the adsorption mechanism.The results showed,in pH =3,contact time = 100 min,ZVI dose = 5000 mg·L~(-1),and MWCNTs dose = 600 mg·L~(-1)in 100 mg·L~(-1)dye concentration,the adsorption efficiency increased to 99.16%.Also,adsorption kinetics was best described by the pseudo-second-order model.Equilibrium data fitted well with the Freundlich isotherm(R2= 0.99).The negative values of ΔG0and the positive value of ΔH0(91.76) indicate that the RR198 adsorption process is spontaneous and endothermic.According to the results,the combination of MWCNTs and ZVI was highly efficient in the removal of azo dyes.  相似文献   

9.
The effects of solar irradiation on the two azo dyes CI Acid Red 1 and CI Acid Orange 8 were investigated both on dyed silk and in aqueous solution at pH 2–4.5. When absorbed on silk, the dyes were more photoreactive, both undergoing photodegradation, though at different rates, and displaying a protective action towards the fibre substrate, as evidenced by viscosimetric analysis. In aqueous solution CI Acid Orange 8 underwent photodegradation, with a quantum yield around 10−3 mol einstein−1, while the predominant reaction occurring from CI Acid Red 1 was photocyclization, especially at low pH.  相似文献   

10.
A SiO2/Nb2O5 mixed oxide was prepared by a sol–gel processing method based on TEOS and NbCl5 as precursors and HCl as catalysts. A material having a specific surface area of 703 m2 g−1, average pore diameter of 2.4 nm and 5 wt.% of Nb was obtained. An amperometric peroxidase-based biosensor for phenol was constructed by immobilizing the enzyme onto the SiO2/Nb2O5 sol–gel matrix by adsorption and cross-linking with glutaraldehyde and mixing with graphite powder to make a modified carbon paste. The biosensor performance for phenol detection, investigated in a flow injection system, was based on mediated electron transfer of horseradish peroxidase (HRP), avoiding the direct electron transfer of HRP, which was blocked by the sol–gel matrix. With optimized conditions, a linear response range from 5 to 25 μmol dm−3 for phenol was obtained with a sensitivity of 3.2 nA dm3 μmol−1. The detection limit of the biosensor for phenol was 0.5 μmol dm−3 and the analytical frequency was 27 samples h−1. The biosensor response was tested for various phenol substrates and the highest response was observed for 2-amino-4-chlorophenol. During 200 determinations, the biosensor kept the same response for phenol. The modified carbon paste retained its activity during 6 months of storage under refrigeration.  相似文献   

11.
The structure and density of individual ammonium chloride particles formed at 0 and −20°C by homogeneous nucleation were studied using electron microscopy and X-ray diffraction. The crystal size apparently increased at the lower temperature and many of the particles formed at −20°C were single crystals or had an oriented polycrystalline structure. These results differ from those reported previously for particles formed at room temperature (23–26°C), which showed an amorphous or randomly-oriented fine crystal structure. Coagulation was more frequently observed as the temperature decreased and the porosity present in the particles appeared to be much finer and more uniform. The density of these particles decreased from about 0.26 g cm−3 for particles of size 0.1–0.2 μm to approximately 0.1 g cm−3 for particles slightly smaller than 1 μ.  相似文献   

12.
A method to quantify DRIFT spectral features associated with the in situ adsorption of gases on a NOx adsorber catalyst, Pt/K/Al2O3, is described. To implement this method, the multicomponent catalyst is analysed with DRIFT and chemisorption to determine that under operating conditions the surface comprised a Pt phase, a pure γ-Al2O3 phase with associated hydroxyl groups at the surface, and an alkalized-Al2O3 phase where the surface –OH groups are replaced by –OK groups. Both DRIFTS and chemisorption experiments show that 93–97% of the potassium exists in this form. The phases have a fractional surface area of 1.1% for the 1.7 nm-sized Pt, 34% for pure Al2O3 and 65% for the alkalized-Al2O3. NO2 and CO2 chemisorption at 250 °C is implemented to determine the saturation uptake value, which is observed with DRIFTS at 250 °C. Pt/Al2O3 adsorbs 0.087 μmol CO2/m2and 2.0 μmol NO2/m2, and Pt/K/Al2O3 adsorbs 2.0 μmol CO2/m2and 6.4 μmol NO2/m2. This method can be implemented to quantitatively monitor the formation of carboxylates and nitrates on Pt/K/Al2O3 during both lean and rich periods of the NOx adsorber catalyst cycle.  相似文献   

13.
This paper investigates the reduction of ionic concentration and carbon oxygen demand (COD) in dairy process waters modelled by one volume of skim milk diluted with two volumes of water using shear-enhanced reverse osmosis. Initial COD and conductivity were, respectively, 36,000 mg O2 L−1 and 2000 μS cm−1. We have compared the performances of a VSEP vibratory pilot and of a single rotating disk-stationary membrane module equipped with the same Desal AG membrane (Osmonics). Membrane shear rates were varied by changing the vibration frequency in the VSEP and the disk rotation speed or adding radial vanes in the other module. In all tests the permeate COD was reduced below 15 mg O2 L−1. Permeate fluxes reached a maximum of 180 L h−1 m−2 at a transmembrane pressure (TMP) of 4 MPa at initial concentration with the VSEP at its resonant frequency and with the disk equipped with 6 mm high vanes rotating at 2000 rpm. Permeate conductivity fell from 60 μS cm−1 at 1 MPa to about 18 μS cm−1 at 4 MPa. In concentration tests, corresponding permeate fluxes at the maximum volume reduction ratio reached (VRR = 8), were 55 L h−1 m−2 for the VSEP and 60 L h−1 m−2 for the rotating disk at a TMP of 4 MPa. Permeate conductivities increased exponentially with VRR from 18 to 210 μS cm−1 for the rotating disk and to 250 μS cm−1 for the VSEP. However the mean conductivity of collected permeate varied from 38 μS cm−1at highest shear rate to 60 at lower shear rates. This study shows that these filtration systems permit to obtain reusable water from this high initial COD model effluent with one single reverse osmosis step.  相似文献   

14.
The catalytic effect of a heteropolyacid, H4SiW12O40, on nitrobenzene (20 and 30 μM) oxidation in supercritical water was investigated. A capillary flow-through reactor was operated at varying temperatures (T=400–500 °C; P=30.7 MPa) and H4SiW12O40 concentrations (3.5–34.8 μM) in an attempt to establish global power-law rate expressions for homogenous H4SiW12O40-catalyzed and uncatalyzed supercritical water oxidation. Oxidation pathways and reaction mechanisms were further examined via primary oxidation product identification and the addition of various hydroxyl radical scavengers (2-propanol, acetone, acetone-d6, bromide and iodide) to the reaction medium. Under our experimental conditions, nitrobenzene degradation rates were significantly enhanced in the presence of H4SiW12O40. The major differences in temperature dependence observed between catalyzed and uncatalyzed nitrobenzene oxidation kinetics strongly suggest that the reaction path of H4SiW12O40-catalyzed supercritical water oxidation (average activation Ea=218 kJ/mol; k=0.015–0.806 s−1 energy for T=440–500 °C; Ea=134 kJ/mol for the temperature range T=470–490 °C) apparently differs from that of uncatalyzed supercritical water oxidation (Ea=212 kJ/mol; k=0.37–6.6 μM s−1). Similar primary oxidation products (i.e. phenol and 2-, 3-, and 4-nitrophenol) were identified for both treatment systems. H4SiW12O40-catalyzed homogenous nitrobenzene oxidation kinetics was not sensitive to the presence of OH√ scavengers.  相似文献   

15.
Layered -titanate materials, NaxMx/2Ti1−x/2O2 (M=Co, Ni and Fe, x=0.2–0.4), were synthesized by flux reactions, and electrical properties of polycrystalline products were measured at 300–800 °C. After sintering at 1250 °C in Ar, all products show n-type thermoelectric behavior. The values of both d.c. conductivity and Seebeck coefficient of polycrystalline Na0.4Ni0.2Ti0.8O2 were ca. 7×103 S/m and ca. −193 μV/K around 700 °C, respectively. The measured thermal conductivity of layered -titanate materials has lower value than conductive oxide materials. It was ca. 1.5 Wm−1 K−1 at 800 °C. The estimated thermoelectric figure-of-merit, Z, of Na0.4Ni0.2Ti0.8O2 and Na0.4Co0.2Ti0.8O2 was about 1.9×10−4 and 1.2×10−4 K−1 around 700 °C, respectively.  相似文献   

16.
The UV-visible spectra of p-methyl red were examined at 25°C in water at various acidities and the variations in the spectra were correlated with the structures of the several forms of the compound. The monoprotonated form gives aggregates at concentrations exceeding 1.50 × 10−5 mol dm−3 p-methyl red. In 0.1–1.0 mol dm−3 HCl, p-methyl red is present as a tautomeric equilibrium mixture with an equilibrium constant of 4.0. The microscopic acid dissociation constants that describe the acid-base equilibria involving the cationic form were calculated. The partition coefficient that describes the distribution of p-methyl red between di-n-butyl ether and water attains a maximum value of 49.0 at pH 3.5.  相似文献   

17.
Some novel PVC membrane electrodes based on N,N′-bis-(benzaldehyde)-glycine metallic complexes of Cu(II), Ni(II), Zn(II) and Co(II) as neutral carriers are described. The results showed that the electrode based on the N,N′-bis-(benzaldehyde)-glycine copper(II) complex [Cu(II)-BBAG] had a near-Nernstian response to the thiocyanate ion ranging from 1.0×10−1 to 9.0×10−7 M in a phosphate buffer solution of pH 4.0 with a detection limit of 7.0×10−7 M and a slope of −57.6 mV/decade at 25°C. The electrode displays an anti-Hofmeister selectivity sequence in the following order: SCN>ClO4>Sal>I>Br>NO2>NO3>SO2−3>SO2−4>Cl>H2PO The response mechanism is discussed in view of both AC impedance and UV spectroscopy techniques. The [Cu(II)-BBAG]-based electrode was successfully applied to the determination of the thiocyanate ion in wastewater and human saliva.  相似文献   

18.
The synthesis of cyclic carbonate from butyl glycidyl ether (BGE) and carbon dioxide was performed in the presence of quaternary ammonium salt catalysts. Quaternary ammonium salts of different alkyl group (C3, C4, C6 and C8) and anions (Cl, Br and I) were used for this reaction carried out in a batch autoclave reactor at 60–120 °C. The catalytic activity increased with increasing alkyl chain length in the order of C3 < C4 < C6. But, the quaternary ammonium salt with longer alkyl chain length (C8) decreased the conversion of BGE because it is too bulky to form an intermediate with BGE. For the counter anion of the tetrabutyl ammonium salt catalysts, the BGE conversion decreased in the order Cl > Br > I. The effects of carbon dioxide pressure and reaction temperature on this reaction were also studied to better understand the reaction mechanism.  相似文献   

19.
程德红  王佳齐  林杰  卢声  郝旭  路艳华 《化工学报》2015,66(Z1):242-246
以离子液体1-丁基-3-甲基咪唑溴代盐为原料, 合成含有离子液体咪唑基团和羟基基团的羟基化1-丁基-3-甲基咪唑离子液体铁配合物, 并将其用于活性染料的吸附。考察了该离子液体铁配合物对活性蓝19的吸附影响因素及吸附类型。结果表明当离子液体铁配合物的用量为0.02 g, 在pH为4~5, 活性蓝19染料的浓度为0.05 g·L-1, 体积为3.0 ml, 吸附时间为15 s时, 离子液体铁配合物对活性蓝19染料的吸附率为98%。以0.1 mol·L-1 NaOH作为解吸剂, 可实现对吸附的活性蓝的洗脱, 解吸率为60%, 活性蓝19的回收率为54%。基于以上吸附方法, 可实现对印染废水中活性蓝19染料的回收。  相似文献   

20.
The preparation of poly-(3-methylthiophene)—multi-walled carbon nanotubes hybrid composite electrodes is reported. The hybrid electrode shows a synergic effect of the electrocatalytic properties, and high active surface area of both the conducting polymer and carbon nanotubes, which gives rise to a remarkable improvement of oxidation of NADH with respect to polymer-modified electrodes, and CNTs-modified electrodes. SEM showed that carbon nanotubes served as nanosized backbone for P3MT electropolymerization. The amperometric NADH detection at +300 mV provided fast responses, a range of linearity between 5.0 × 10−7 and 2.0 × 10−5 mol l−1, and a detection limit of 1.7 × 10−7 mol l−1, which compares advantageously with those reported for other NADH CNT-based amperometric sensors. Furthermore, the direct electrochemistry of cytochrome c and FAD at the hybrid electrode is also checked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号