首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 164 毫秒
1.
通过MATLAB软件建立整车七自由度的动力学仿真模型。半主动悬架采用双模糊控制器,将计算出的刚性车身与悬架连接处的速度、动行程与俯仰角参数作为主动悬架控制的输入量;前轴左右车轮,悬架与车身连接处的速度与其期望值的误差及其变化率作为第一控制力输入量,刚性车身质心俯仰角速度与其期望值的误差及其变化率作为第二控制力输入量;后轴左右车轮,车悬架与车身连接处的速度与其期望值的误差及其变化率作为第一控制力输入量,悬架动行程与其期望值的误差及其变化率作为第二控制力输入量。计算结果表明:采用双模糊控制器能明显改善整车行驶的舒适性与稳定性,系统综合特性较好,刚性车身的垂向加速度、俯仰角加速度、前后悬架动行程性能提升明显,分别提升27.2%,19.6%,95.5%,33.8%。  相似文献   

2.
基于模糊PID控制器的1/2整车半主动悬架仿真研究   总被引:1,自引:1,他引:0  
通过抽象简化建立1/2整车半主动悬架数学模型,并在MATLAB软件中搭建仿真模型;计算出被动悬架的簧载质量、速度及其变化率,并作为主动悬架控制的输出量。半主动悬架采用模糊PID复合控制器,用模糊控制策略对PID控制器在给定的参数范围内进行在线实时调整。研究结果表明:采用模糊PID复合控制器的半主动悬架在不同车速阶段,对改善整车的总体性能有明显作用,车身垂直加速度、车身俯仰角加速度、前后悬架动行程改善明显,提升了整车在不同车速范围内的乘坐舒适性和操纵稳定性。  相似文献   

3.
针对主动悬架线性二次高斯控制(linear-quadratic-Gaussian control, LQG)控制器,提供一种快速确定其最佳控制加权系数及最优控制力的方法。 通过车辆行驶平顺性评价指标分析,利用无量纲归一化思想建立主动悬架最优控制目标函数,给出平顺性加权系数与控制加权系数间的关系;根据主动悬架力学模型,利用Newmark-β显式积分法,建立平顺性加权系数仿真分析模型。以路面不平度作为输入激励,以轮胎动位移和悬架动挠度为约束条件,借鉴交替迭代思想建立交替迭代优化算法,建立主动悬架LQG控制加权系数及控制力的优化方法。通过与现有LQG控制器设计方法的对比分析,对本设计方法的先进性和可靠性进行仿真验证,结果表明设计的LQG控制器能够显著改善车辆的乘坐舒适性。  相似文献   

4.
通过MATLAB软件建立基于二自由度半主动悬架动力学仿真模型,计算簧载质量速度及其变化率作为半主动悬架控制的输入量;半主动悬架采用模糊PID复合控制器,用模糊控制策略对PID控制器在给定的参数范围内进行在线实时调整.计算结果表明:采用模糊PID控制器在各不同车速阶段对改善悬架的总体性能有明显作用,车身垂直加速度、悬架动行程、轮胎动行程在低速阶段改善突出,性能分别提升6.7%,4.1%,4.5%.  相似文献   

5.
针对汽车半主动悬架模糊控制器的模糊控制规则无法有效调整的问题,建立了两自由度1/4车辆模型.利用白噪声模拟路面激励并作为系统的输入,将人工神经网络与模糊逻辑控制相融合,采用人工神经网络模拟模糊控制过程,实现了模糊规则的自适应调整.将直接控制力作为参考控制力对神经网络进行训练,输出控制力结合开关控制策略实现悬架的半主动控制.仿真分析表明,神经模糊融合网络控制器相对于模糊控制器和被动悬架,使悬架性能得到了显著的改善.  相似文献   

6.
通过实验测出磁流变阻尼器在不同电流作用下的力与速度关系的阻尼系数特征数据,并将所得阻尼数据导入麦弗逊悬架多体动力学模型;计算簧载质量速度及其变化率作为主动悬架控制的输出量;半主动悬架采用模糊PID复合控制器,用模糊控制策略对PID控制器在给定的参数范围内进行在线实时调整;在MATLAB中搭建悬架系统联合仿真模型。仿真计算结果表明:在各不同车速阶段,采用模糊PID复合控制器均对改善悬架的总体性能有明显作用;且车身垂直加速度、悬架动行程及车轮侧向滑移量在低频阶段改善突出,提升了整车在不同车速范围内的乘坐舒适性与操作稳定性。  相似文献   

7.
为了提高电动汽车行驶平顺性及操纵稳定性,针对电动汽车悬架进行振动分析,建立了七自由度汽车电动主动悬架模型,设计四轮全驱电动汽车电动主动悬架结构及其控制系统.重点针对电动汽车主动悬架特点设计对角递归神经网络(DRNN)控制器,选取车身垂向加速度、悬架动行程和轮胎动行程作为神经网络控制器输入,采用梯度下降法对神经网络权值进行在线调整.仿真结果表明,具有DRNN控制器的电动主动悬架控制效果较PID控制主动悬架和被动悬架有显著提高,有效改善了汽车行驶平顺性及操纵稳定性,也说明所设计的控制策略在电动汽车电动主动悬架控制方面的有效性.  相似文献   

8.
传感器掺杂噪声信号是主动悬架系统运行过程中常见的一种故障. 针对二自由度车辆主动悬架系统加速度传感器发生故障的情况,基于最优控制理论和卡尔曼滤波算法,设计了线性高斯二次型(linear quadratic Gaussian,LQG)控制器,分别在谐波激励、冲击性和实测路面谱激励下,进行综合悬架性能仿真分析. 结果表明,与无容错情况相比,故障状态下采用容错控制后的簧载与非簧载质量传输率、悬架动行程传输率均大幅减小,有效提升了驾乘舒适性,同时轮胎动载荷传输率显著增大,确保了安全性,整体可近似恢复到无故障时的主动悬架性能.  相似文献   

9.
建立了基于主动悬架的的高速列车悬架—座椅—人体的四自由度动力学模型,并对该列车模型平顺性的优化控制进行了研究。针对该座椅主动悬架模型设计了模糊控制器、传统PID控制器与自适应的模糊PID控制器,应用Matlab/Simulink软件在相同的工况下进行仿真实验,并将三种控制方法下的仿真结果与被动悬架车辆模型的仿真结果进行对比分析。结果表明,相较与被动悬架车辆模型,上述三种控制方法下的主动模型座椅处的振动特性都得到了改善,达到了预期的控制效果,且自适应模糊PID控制下的改善程度最佳,对高速列车乘坐舒适性的提高有着一定的理论参考意义。  相似文献   

10.
针对救护车担架-卧位人体系统,建立了六自由度主动减振系统的数学模型,并采用模糊控制的方法研究了救护车担架—卧位人体系统振动的主动减振问题。以担架质心处垂向速度、俯仰角速度及其变化率作为模糊控制器输入,使用双模糊控制器实现担架减振装置的主动控制,达到改善担架垂直和俯仰振动的综合减振目的。用Matlab语言及其Simulink工具箱进行了仿真,结果表明,主动控制的减振系统能有效地降低救护车担架-卧位人体系统垂直振动和俯仰振动,从而在改善救护车减振性能方面具有重要的应用价值。  相似文献   

11.
基于运动链图拓扑图库,提出一种新型六自由度前后双提升驱动锻造操作机工作装置.该装置不仅可以控制夹钳提升的同步性,还能更好地适应偏载工况.基于虚功原理建立了该新型锻造操作机主运动机构的动力学模型,并结合液压缸系统模型,设计模糊PID控制器实现对锻造操作机夹钳末端的运动跟踪.对夹钳在竖直平面运动进行轨迹规划并确定运动过程中液压驱动各单元所需提供的驱动力.基于Matlab/Simulink平台搭建控制系统仿真模型,在给定负载情况下,分别对夹钳的竖直提升运动、水平运动以及俯仰运动进行仿真分析,得到系统单位阶跃响应与正弦响应跟踪曲线及误差曲线.研究结果表明:基于该新型锻造操作机,采用模糊PID控制器能够快速、精确地获得新机构的性能参数并高效地完成跟踪,使系统保持良好的稳态性能与动态特性.  相似文献   

12.
在分析限滑差速器力矩传递特性基础上,建立了限滑差速器、液压控制系统和后轮驱动汽车整车动力学方程.以驱动轮滑转率和角速度差变化率为控制门限设计了控制逻辑.采用Simulink/Stateflow工具箱,设计了逻辑门限控制器.在分离附着路面上进行了整车加速性能仿真研究,结果表明,基于限滑差速器的驱动防滑控制系统能充分利用高附着路面附着力,有效抑制左右驱动轮转速差,提高车辆驱动性能.  相似文献   

13.
汽车半主动空气悬架自适应模糊神经网络控制   总被引:5,自引:0,他引:5  
考虑空气悬架弹簧刚度可调的特性,建立了车辆5自由度的半主动悬架非线性动力学模型.提出了一种基于自适应模糊神经网络系统结构的模型,参考自适应控制方法来研究汽车半主动空气悬架的非线性控制问题,并考虑半车模型前后悬架的输入时滞,对其进行了仿真分析.研究结果表明:该控制方法能够使人体垂直加速度、车身垂直加速度和俯仰角加速度都得到很大的衰减,可在一定程度上减少路面对车身的振动冲击,提高汽车的行驶平顺性.  相似文献   

14.
Fuzzy Logic Control for Semi-Active Suspension System of Tracked Vehicle   总被引:2,自引:0,他引:2  
The model of half a tracked vehicle semi-active suspension is established. The fuzzy logic controller of the semi-active suspension system is constructed. The acceleration of driver‘s seat and its time derivative are used as the inputs of the fuzzy logic controller, and the fuzzy logic controller output determines the semi-active suspen-sion controllable damping force. The fuzzy logic controller is to minimize the mean square root of acceleration of the driver‘s seat. The control forces of controllable dampers behind the first road wheel are obtained by time delay, and the delay times are determined by the vehicle speed and axles distances. The simulation results show that this control method can decrease the acceleration of driver‘s seat and the suspension travel of the first road wheel,the ride quality is improved obviously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号