首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tissue characterization in intravascular ultrasound images   总被引:9,自引:0,他引:9  
Intravascular ultrasound (IVUS) imaging permits direct visualization of vascular pathology. It has been used to evaluate lumen and plaque in coronary arteries and its clinical significance for guidance of coronary interventions is increasingly recognized. Conventional manual evaluation is tedious and time-consuming. This paper describes a highly automated approach to segmentation of coronary wall and plaque, and determination of plaque composition in individual IVUS images and pullback image sequences. The determined regions of plaque were classified in one of three classes: soft plaque, hard plaque, or hard plaque shadow. The method's performance was assessed in vitro and in vivo in comparison with observer-defined independent standards. In the analyzed images and image sequences, the mean border positioning error of the wall and plaque borders ranged from 0.13-0.17 mm. Plaque classification correctness was 90%.  相似文献   

2.
Intravascular ultrasound (IVUS) provides direct depiction of coronary artery anatomy, including plaque and vessel area, which is important in quantitative studies on the progression or regression of coronary artery disease. Traditionally, these studies have relied on manual evaluation, which is laborious, time consuming, and subject to large interobserver and intraobserver variability. A new technique, called active surface segmentation, alleviates these limitations and makes strides toward routine analyses. However, for three-dimensional (3-D) plaque assessment or 3-D reconstruction to become a clinical reality, methods must be developed which can analyze many images quickly. Presented is a comparison between two active surface techniques for three-dimensional segmentation of luminal and medial-adventitial borders. The force-acceleration technique and the neighborhood-search technique accurately detected both borders in vivo (r2 = 0.95 and 0.99, Williams' index = 0.67 and 0.65, and r2 = 0.95 and 0.99, WI = 0.67 and 0.70, respectively). However, the neighborhood-search technique was significantly faster and required less computation. Volume calculations for both techniques (r2 = 0.99 and r2 = 0.99) also agreed with a known-volume phantom. Active surface segmentation allows 3-D assessment of coronary morphology and further developments with this technology will provide clinical analysis tools.  相似文献   

3.
Due to the significant complexity of membrane morphology and the generally poor image quality in electron tomographic volumes, current automatic methods for segmentation of membranes perform poorly. Users must resort to manual tracing of recognized patterns on 2-D slices of the volume, a method that suffers from subjectivity and is very labor intensive, preventing quantitative analyses of tomographic data that require comparative analyses of many volumes. To overcome these limitations, we develop an automatic 3-D segmentation method that fully exploits the prior knowledge about the shape of the membranes as well as the 3-D information provided by the tomograms, and systematically combines this knowledge with the image data to improve segmentation results. The method is based on the watersnake framework. By mathematically reformulating the traditional watershed segmentation as an energy minimization problem, the watersnake inherits the many strengths of the watershed method while overcoming the limitations of the traditional energy-based segmentation methods. In our previous work (H. Nguyen et al., 2003), the original watersnake model was successfully modified by incorporating smoothness into watershed segmentation. In this work, we further extend that model to incorporate into the energy function various constraints representing our prior knowledge about the global shape of the cellular features to be segmented. Segmentation can, therefore, be accomplished via minimization of the energy function subject to the shape prior constraints. Finally, the mathematical framework is further extended from 2-D to 3-D so that segmentation can be carried out in 3-D to take advantage of the additional information provided by the tomograms. We apply this method for the automatic extraction of biological membranes of varying complexities including those of bacterial walls and mitochondrial boundaries.  相似文献   

4.
A method for the automatic measurement of femur length in fetal ultrasound images is presented. Fetal femur length measurements are used to estimate gestational age by comparing the measurement to a typical growth chart. Using a real-time ultrasound system, sonographers currently indicate the femur endpoints on the ultrasound display station with a mouse-like device. The measurements are subjective, and have been proven to be inconsistent. The automatic approach described exploits prior knowledge of the general range of femoral size and shape by using morphological operators, which process images based on shape characteristics. Morphological operators are used first to remove the background (noise) from the image, next to refine the shape of the femur and remove spurious artifacts, and finally to produce a single pixel-wide skeleton of the femur. The skeleton endpoints are assumed to be the femur endpoints. The length of the femur is calculated as the distance between those endpoints. A comparison of the measurements obtained with the manual and with the automated techniques is included.  相似文献   

5.
Segmentation of intravascular ultrasound images: a knowledge-based approach   总被引:5,自引:0,他引:5  
Intravascular ultrasound imaging of coronary arteries provides important information about coronary lumen, wall, and plaque characteristics. Quantitative studies of coronary atherosclerosis using intravascular ultrasound and manual identification of wall and plaque borders are limited by the need for observers with substantial experience and the tedious nature of manual border detection. We have developed a method for segmentation of intravascular ultrasound images that identifies the internal and external elastic laminae and the plaque-lumen interface. The border detection algorithm was evaluated in a set of 38 intravascular ultrasound images acquired from fresh cadaveric hearts using a 30 MHz imaging catheter. To assess the performance of our border detection method we compared five quantitative measures of arterial anatomy derived from computer-detected borders with measures derived from borders manually defined by expert observers. Computer-detected and observer-defined lumen areas correlated very well (r=0.96, y=1.02x+0.52), as did plaque areas (r=0.95, y=1.07x-0.48), and percent area stenosis (r=0.93, y=0.99x-1.34.) Computer-derived segmental plaque thickness measurements were highly accurate. Our knowledge-based intravascular ultrasound segmentation method shows substantial promise for the quantitative analysis of in vivo intravascular ultrasound image data.  相似文献   

6.
A multiresolution texture segmentation (MTS) approach to image segmentation that addresses the issues of texture characterization, image resolution, and time to complete the segmentation is presented. The approach generalizes the conventional simulated annealing method to a multiresolution framework and minimizes an energy function that is dependent on the resolution of the size of the texture blocks in an image. A rigorous experimental procedure is also proposed to demonstrate the advantages of the proposed MTS approach on the accuracy of the segmentation, the efficiency of the algorithm, and the use of varying features at different resolution. Semireal images, created by sampling a series of diagnostic ultrasound images of an ovary in vitro, were tested to produce statistical measures on the performance of the approach. The ultrasound images themselves were then segmented to determine if the approach can achieve accurate results for the intended ultrasound application. Experimental results suggest that the MTS approach converges faster and produces better segmentation results than the single-level approach.  相似文献   

7.
Intravascular ultrasound (IVUS) is clinically available for visualizing coronary arteries. However, it suffers from acoustic shadow areas and ring-down artifacts as two of the common issues in IVUS images. This paper introduces an approach which can overcome these limitations. As shadow areas were displayed behind hard plaques in the IVUS grayscale images, calcified plaques were first segmented by using Otsu threshold. Then, active contour, histogram matching, and local histogram matching are implemented. In addition, a new modified circle Hough transform is introduced to remove the ring-down artifacts from IVUS images. In order to evaluate the efficacy of this new method in detection of shadow and ring-down regions, 300 IVUS images are considered. Sensitivity of 89% and specificity of 92% are achieved from a comparison in revelation of calcium along with shadow in the proposed method and virtual histology images. Also, area differences of \(5.83 \pm 3.3\) and \(5.65 \pm 2.83\) are obtained, respectively, for ring-down and shadow domain when compared to measures performed manually by a clinical expert.  相似文献   

8.
Based on intravascular ultrasound (IVUS) video images, a novel motion estimation method combining the genetic algorithm-based optical flow method and a step-by-step and sum strategy has been developed to estimate the displacement and strain distributions on the scan cross sections of the arteries. And then, real elasticity distributions were reconstructed under the conditions of small and large deformation. Experimental results of in vitro porcine arteries demonstrated the feasibility of the method. This investigation may have potentials to provide new technological means for monitoring and evaluating percutaneous transluminal coronary angioplasty procedure, especially, for the end users of IVUSpercimaging equipment.  相似文献   

9.
A model-based method for three-dimensional image segmentation was developed and its performance assessed in segmentation of volumetric cardiac magnetic resonance (MR) images and echocardiographic temporal image sequences. Comprehensive design of a three-dimensional (3-D) active appearance model (AAM) is reported for the first time as an involved extension of the AAM framework introduced by Cootes et al. The model's behavior is learned from manually traced segmentation examples during an automated training stage. Information about shape and image appearance of the cardiac structures is contained in a single model. This ensures a spatially and/or temporally consistent segmentation of three-dimensional cardiac images. The clinical potential of the 3-D AAM is demonstrated in short-axis cardiac MR images and four-chamber echocardiographic sequences. The method's performance was assessed by comparison with manually identified independent standards in 56 clinical MR and 64 clinical echo image sequences. The AAM method showed good agreement with the independent standard using quantitative indexes of border positioning errors, endo- and epicardial volumes, and left ventricular mass. In MR, the endocardial volumes, epicardial volumes, and left ventricular wall mass correlation coefficients between manual and AAM were R2 = 0.94, 0.97, 0.82, respectively. For echocardiographic analysis, the area correlation was R2 = 0.79. The AAM method shows high promise for successful application to MR and echocardiographic image analysis in a clinical setting.  相似文献   

10.
Segmentation of ultrasound (US) images of breast cancer is one of the most challenging problems of the modern medical image processing. A number of popular codes for US segmentation are based on a generalized gradient vector flow (GGVF) method proposed by Xu and Prince. The GGVF equations include a smoothing term (diffusion) applied to regions of small gradients of the edge map and a stopping term to fix and extend large gradients appearing at the boundary of the object.The paper proposes two new directions. The first component is diffusion as a polynomial function of the intensity of the edge map. The second component is the orientation score of the vector field. The new features are integrated into the GGVF equations in the smoothing and the stopping term.The algorithms, having been tested by a set of ground truth images, show that the proposed techniques lead to a better convergence and better segmentation accuracy with the reference to conventional GGVF snakes. The adaptive multi-feature snake does not require any hand-tuning. However, it is as efficient as the standard GGVF with the parameters selected by the “brutal force approach”. Finally, proposed approach has been tested against recent modifications of GGVF, i.e. the Poisson gradient vector flow, the mixed noise vector flow and the convolution vector flow. The numerical tests employing 195 synthetic and 48 real ultrasound images show a tangible improvement in the accuracy of segmentation.  相似文献   

11.
This paper presents a novel deformable model for automatic segmentation of prostates from three-dimensional ultrasound images, by statistical matching of both shape and texture. A set of Gabor-support vector machines (G-SVMs) are positioned on different patches of the model surface, and trained to adaptively capture texture priors of ultrasound images for differentiation of prostate and nonprostate tissues in different zones around prostate boundary. Each G-SVM consists of a Gabor filter bank for extraction of rotation-invariant texture features and a kernel support vector machine for robust differentiation of textures. In the deformable segmentation procedure, these pretrained G-SVMs are used to tentatively label voxels around the surface of deformable model as prostate or nonprostate tissues by a statistical texture matching. Subsequently, the surface of deformable model is driven to the boundary between the tentatively labeled prostate and non-prostate tissues. Since the step of tissue labeling and the step of label-based surface deformation are dependent on each other, these two steps are repeated until they converge. Experimental results by using both synthesized and real data show the good performance of the proposed model in segmenting prostates from ultrasound images.  相似文献   

12.
Knowledge-based segmentation of Landsat images   总被引:4,自引:0,他引:4  
A knowledge-based approach for Landsat image segmentation is proposed. The image segmentation problem is solved by extracting kernel information from the input image to provide an initial interpretation of the image and by using a knowledge-based hierarchical classifier to discriminate between major land-cover types in the study area. The proposed method is designed in such a way that a Landsat image can be segmented and interpreted without any prior image-dependent information. The general spectral land-cover knowledge is constructed from the training land-cover data, and the road information of an image is obtained through a road-detection program  相似文献   

13.
Intensity-based segmentation of microarray images   总被引:5,自引:0,他引:5  
The underlying principle in microarray image analysis is that the spot intensity is a measure of the gene expression. This implicitly assumes the gene expression of a spot to be governed entirely by the distribution of the pixel intensities. Thus, a segmentation technique based on the distribution of the pixel intensities is appropriate for the current problem. In this paper, clustering-based segmentation is described to extract the target intensity of the spots. The approximate boundaries of the spots in the microarray are determined by manual adjustment of rectilinear grids. The distribution of the pixel intensity in a grid containing a spot is assumed to be the superposition of the foreground and the local background. The k-means clustering technique and the partitioning around medoids (PAM) were used to generate a binary partition of the pixel intensity distribution. The median (k-means) and the medoid (PAM) of the cluster members are chosen as the cluster representatives. The effectiveness of the clustering-based segmentation techniques was tested on publicly available arrays generated in a lipid metabolism experiment (Callow et al., 2000). The results are compared against those obtained using the region-growing approach (SPOT) (Yang et al., 2001). The effect of additive white Gaussian noise is also investigated.  相似文献   

14.
Optimal segmentation of cell images   总被引:2,自引:0,他引:2  
An optimal segmentation algorithm for light microscopic cell images is presented. The image segmentation is performed by thresholding a parametric image approximating the original image. Using the mean squared error between the original and the constructed image as the cost function, the segmentation problem is transformed into an optimisation process where parametric parameters are determined that minimise the defined cost function. The cost function is iteratively minimised using an unsupervised learning rule to adjust the parameters, and a parametric image is constructed at each iteration, based on the obtained parameters. The cell region is extracted by thresholding the final parametric image, where the threshold is one of the image parameters. Application results to real cervical images are provided to show the performance of the proposed segmentation approach. Experimental segmentation results are presented for the proposed optimal algorithm for synthetic cell images corrupted by variant levels of noise; these results are compared with the K-means clustering method and Bayes classifier in terms of classification errors  相似文献   

15.
There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmentation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.  相似文献   

16.
Automatic image processing methods are a prerequisite to efficiently analyze the large amount of image data produced by computed tomography (CT) scanners during cardiac exams. This paper introduces a model-based approach for the fully automatic segmentation of the whole heart (four chambers, myocardium, and great vessels) from 3-D CT images. Model adaptation is done by progressively increasing the degrees-of-freedom of the allowed deformations. This improves convergence as well as segmentation accuracy. The heart is first localized in the image using a 3-D implementation of the generalized Hough transform. Pose misalignment is corrected by matching the model to the image making use of a global similarity transformation. The complex initialization of the multicompartment mesh is then addressed by assigning an affine transformation to each anatomical region of the model. Finally, a deformable adaptation is performed to accurately match the boundaries of the patient's anatomy. A mean surface-to-surface error of 0.82 mm was measured in a leave-one-out quantitative validation carried out on 28 images. Moreover, the piecewise affine transformation introduced for mesh initialization and adaptation shows better interphase and interpatient shape variability characterization than commonly used principal component analysis.   相似文献   

17.
Ridge-based vessel segmentation in color images of the retina   总被引:13,自引:0,他引:13  
A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kappaNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. The results show that our method is significantly better than the two rule-based methods (p < 0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.  相似文献   

18.
A rule-based segmentation algorithm for color images has been presented in this paper. The proposed strategy is similar to region growing algorithm where the seed points are automatically selected and grown. The similarity percents of neighboring pixels are calculated by means of fuzzy reasoning rules, and the merging of the pixels with regions is performed by comparing the similarity percent with the similarity threshold value. The algorithm does not require any prior knowledge of the number of regions existing in the image and decreases the computational load required for the fuzzy c-means (FCM). Several computer simulations have been performed and the results have been discussed. The simulation results indicate that the proposed algorithm yields segmented color image of perfect accuracy.  相似文献   

19.
We propose new techniques for unsupervised segmentation of multimodal grayscale images such that each region-of-interest relates to a single dominant mode of the empirical marginal probability distribution of grey levels. We follow the most conventional approaches in that initial images and desired maps of regions are described by a joint Markov-Gibbs random field (MGRF) model of independent image signals and interdependent region labels. However, our focus is on more accurate model identification. To better specify region borders, each empirical distribution of image signals is precisely approximated by a linear combination of Gaussians (LCG) with positive and negative components. We modify an expectation-maximization (EM) algorithm to deal with the LCGs and also propose a novel EM-based sequential technique to get a close initial LCG approximation with which the modified EM algorithm should start. The proposed technique identifies individual LCG models in a mixed empirical distribution, including the number of positive and negative Gaussians. Initial segmentation based on the LCG models is then iteratively refined by using the MGRF with analytically estimated potentials. The convergence of the overall segmentation algorithm at each stage is discussed. Experiments show that the developed techniques segment different types of complex multimodal medical images more accurately than other known algorithms.  相似文献   

20.
一种基于区域显著性的红外图像目标分割方法   总被引:3,自引:1,他引:3       下载免费PDF全文
提出了一种基于区域显著性的红外图像目标分割方法,即首先在方差空间中提取显著性区域,然后根据图像复杂度对显著性区域进行筛选,最后采用阈值分割方法分割显著性区域,获取目标.算法具有较强的适用性和工程实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号