首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT According to experimental evidence, the early stages of fatigue crack propagation under fretting conditions are strongly influenced by the stress gradient generated in the material near the contact zone. This suggests that the crack growth process can be analysed using methodologies similar to those employed to predict the fatigue behaviour of notched elements. This paper assesses the applicability of a number of models originally developed for notched components to fretting fatigue problems. The ability of such models to predict fatigue failure is discussed and compared with experimental results for Al 7075‐T6 specimens that were subjected to fretting fatigue under spherical contact.  相似文献   

2.
Mechanical components have stress risers, such as notchs, corners, welding toes and holes. These geometries cause stress concentrations in the component and reduce the fatigue strength and life of the structure. Fatigue crack usually initiates at and propagates from these locations. Traditional fatigue analysis of notched specimens is done using an empirical formula and a fitted fatigue notch factor, which is experimentally expensive and lacks physical meaning. A general methodology for fatigue limit prediction of notched specimens is proposed in this paper. First, an asymptotic interpolation method is proposed to estimate the stress intensity factor (SIF) for cracks at the notch root. Both edge notched and center notched components with finite dimension correction are included into the proposed method. The small crack correction is included in the proposed asymptotic solution using El Haddad’s fictitious crack length. Fatigue limit of the notched specimen is estimated using the proposed stress intensity factor solution when the realistic crack length is approaching zero. A wide range of experimental data are collected and used to validate the proposed methodology. The relationship between the proposed methodology and the traditionally used fatigue notch factor approach is discussed.  相似文献   

3.
4.
This paper provides new insights in the use of the critical distance method for fatigue analysis of notched aluminium components subjected to constant amplitude bending loading. A straightforward test setup was developed to load test samples with different stress concentrations in repeated bending at high test frequency. The mean values of the local endurable stress amplitudes are determined with the staircase method and the Dixon and Mood theory using a minimum amount of test samples. The critical distance is determined using these fatigue limits and the corresponding stress gradients determined by means of finite element analysis. The results indicate a unique critical distance of 0.22 mm for fatigue crack initiation. Consequently, the critical distance theory can be successfully applied for fatigue analysis of notched specimens or engineering components of aluminium EN AW 7075 T7351 with geometrical features of various size and shape subjected to fluctuating loading in bending.  相似文献   

5.
The Theory of Critical Distances (TCD) is a bi‐parametrical approach suitable for predicting, under both static and high‐cycle fatigue loading, the non‐propagation of cracks by directly post‐processing the linear‐elastic stress fields, calculated according to continuum mechanics, acting on the material in the vicinity of the geometrical features being assessed. In other words, the TCD estimates static and high‐cycle fatigue strength of cracked bodies by making use of a critical distance and a reference strength which are assumed to be material constants whose values change as the material microstructural features vary. Similarly, Gradient Mechanics postulates that the relevant stress fields in the vicinity of crack tips have to be determined by directly incorporating into the material constitutive law an intrinsic scale length. The main advantage of such a method is that stress fields become non‐singular also in the presence of cracks and sharp notches. The above idea can be formalized in different ways allowing, under both static and high‐cycle fatigue loading, the static and high‐cycle fatigue assessment of cracked/notched components to be performed without the need for defining the position of the failure locations a priori. The present paper investigates the existing analogies and differences between the TCD and Gradient Mechanics, the latter formalized according to the so‐called Implicit Gradient Method, when such theories are used to process linear‐elastic crack tip stress fields.  相似文献   

6.
Comparative Investigations on Service Life Assessment of Notched Specimens Based on the Local Strain and the Nominal Stress Approach to Fatigue for a Steel SAE 1017 It is still unclear whether the strain based approach to fatigue or the stress based approach to fatigue should be preferred for service life assessment of notched components. In order to clarify the similarities and differences between these concepts stress and strain controlled fatigue experiments have been performed with notched specimens. It has been found, that stress and strain controlled fatigue testing results in the same number of cycles until failure. Essential for this correlation is that the cyclic stable strain amplitude at the notch root is taken for the entry into the strain‐life diagram in both cases. Starting from an elastic‐plastic analysis of the material behaviour at the notch root it is shown, how the strain‐life curve can be converted into a stress‐life curve. Based on that result service‐life is calculated from both approaches mentioned above. The calculation gives nearly the same service‐lives for both cases, but overestimates the measured data. It becomes obvious, that a S‐N curve determined under one‐level loading doesn’t provide a proper basis for service life assessment. While strain or stress‐life curves always contain crack initiation phase as well as crack propagation phase, the fatigue process under irregular loads is mainly governed by crack propagation. As a consequence, the damage per cycle is underestimated for loads near the fatigue limit, if Miner’s rule is used.  相似文献   

7.
The development of simulation methods for calculating notch root parameters for purposes of estimating the fatigue life of notched components is a critical aspect of designing against fatigue failures. At present, however, treatment of the notch root stress and plastic strain field gradients, coupled with intrinsic length scales of grains or other material attributes, has yet to be developed. Ultimately, this approach will be necessary to form a predictive basis for notch size effects in forming and propagating microstructurally small cracks in real structural materials and components. In this study, computational micromechanics is used to clarify and distinguish process zone for crack formation and microstructurally small crack growth, relative to scale of notch root radius and spatial extent of stress concentration at the notch. A new nonlocal criterion for the fatigue damage process zone based on the distribution of a shear-based fatigue indicator parameter is proposed and used along with a statistical method to obtain a new microstructure-sensitive fatigue notch factor and associated notch sensitivity index, thereby extending notch sensitivity to explicitly incorporate microstructure sensitivity and attendant size effects via probabilistic arguments. The notch sensitivity values obtained for a range of notch root radii using the new statistical approach presented in this study predict the general trends obtained from experimental results available in literature.  相似文献   

8.
Fatigue life calculation of notched components based on the elastic‐plastic fatigue fracture mechanics The life of notched components is subdivided into the pre‐crack, or crack‐initiation, and crack propagation phases within and outside notch area. It is known that a major factor governing the service life of notched components under cyclic loading is fatigue crack growth in notches. Therefore a uniform elastic‐plastic crack growth model, based on the J‐Integral, was developed which especially considers the crack opening and closure behaviour and the effect of residual stresses for the determination of crack initiation and propagation lives for cracks in notches under constant and variable‐amplitude loading. The crack growth model will be introduced and verified by experiments.  相似文献   

9.
A NEW METHOD FOR PREDICTING FATIGUE LIFE IN NOTCHED GEOMETRIES   总被引:1,自引:0,他引:1  
The objective of this paper is to develop a notch crack closure model, called NCCM, based on plasticity-induced effects and short fatigue crack growth in the vicinity of the notch, and to predict the fatigue failure life of notched geometries. By using this model the regime for non-propagating cracks (n.p.c.) and the relationship between the fatigue strength reduction factor, Kf , and the elastic stress concentration factor, Kt , under mean stress conditions, can be determined quantitatively. A crack closure model is assumed to apply in the notch regime based on an approach developed to explain the crack growth retardation behavior observed in smooth specimen geometries after an overload. Notch plasticity effects are also applied in the NCCM model. Fatigue failure life is calculated from both short fatigue crack growth in the notch region where elastic–plastic fracture mechanics (EPFM) is applied and from long fatigue crack growth remote from the notch where linear elastic fracture mechanics (LEFM) occurs. This prediction is obtained using a quantity called the effective plasticity-corrected pseudo-stress. The NCCM can be used to account quantitatively for various observed notch phenomena, including both the relationship between Kf and Kt and n.p.c. The effects of the tensile mean stress on the Kf versus Kt relationship is investigated and leads to the little recognized but technologically important observation that mean stress conditions exist where Kf can be greater than Kt . The role of notch radius and tensile mean stress on n.p.c. behavior is also explored. The model is verified using experimental data for notch geometries of aluminum alloy 2024-T3, alloy steel SAE 4130 and mild steel specimens tested at zero and tensile mean stress.  相似文献   

10.
A modified linear elastic fracture mechanics analysis is presented for the evaluation of the crack growth and threshold behavior of small cracks initiated from small defects under combined loading fatigue. For the detailed evaluation of the behavior of small fatigue cracks, the Kitagawa effect, the elastic–plastic behavior of cracks in biaxial stress fields and crack closure effects are taken into account. In-phase and out-of-phase combined tension and torsion fatigue tests were conducted using annealed carbon steel specimens containing small holes. The direction of crack propagation, SN curves and fatigue limits were found to be in good agreement with the theoretical predictions.  相似文献   

11.
The opening and closure behaviour of short fatigue cracks is seen as one of the important phenomena which control fatigue life of components where a major part of life consists of the growth of short cracks. Therefore attempts are undertaken to experimentally assess and to model the behaviour of short cracks with respect to opening and closure. In this paper crack opening results obtained by Sunder et al. through SEM evaluation of striation patterns of 2000 series aluminium alloys are examined and compared to predictions using a model recently developed for fatigue life prediction based on fracture mechanics of short cracks. Sunder's technique for crack opening measurements involves particular load sequences with increasing and decreasing load ranges applied to notched specimens with naturally nucleated surface cracks where crack opening levels are identified by steady-state striation widths for increasing load ranges. A detailed review of Sunder's results, however, indicates a number of inconsistencies and contradictions which are discussed. Opening and closure behaviour of short fatigue cracks, in particular for inelastic conditions, is compared to predictions obtained with the above-mentioned model which incorporates a constant strain opening and closure assumption. For inelastic conditions that may develop at notches this assumption means that cracks would close at considerably lower stress levels as compared to the opening stress which becomes important when effective (local) stress-strain ranges are to be determined for fatigue life prediction under spectrum loading. The constant strain assumption is supported by a number of experimental observations from the literature as discussed in the paper. The approximative nature of this assumption and further details of the model are pointed out which show a need for further developments.  相似文献   

12.
The fatigue behaviour of small, semi‐elliptical surface cracks in a bearing steel was investigated under cyclic shear‐mode loading in ambient air. Fully reversed torsion was combined with a static axial compressive stress to obtain a stable shear‐mode crack growth in the longitudinal direction of cylindrical specimens. Non‐propagating cracks less than 1 mm in size were obtained (i) by decreasing the stress amplitude in tests using notched specimens and (ii) by using smooth specimens in constant stress amplitude tests. The threshold stress intensity factor ranges, ΔKIIth and ΔKIIIth, were estimated from the shape and dimensions of non‐propagating cracks. Wear on the crack faces was inferred by debris and also by changes in microstructure in the wake of crack tip. These effects resulted in a significant increase in the threshold value. The threshold value decreased with a decrease in crack size. No significant difference was observed between the values of ΔKIIth and ΔKIIIth.  相似文献   

13.
Fatigue life predictions for notched members are made using local strain and elastic-plastic fracture mechanics concepts. Crack growth from notches is characterized by J-integral estimates made for short and long cracks. The local notch strain field is determined by notch geometry, applied stress level and material properties. Crack initiation is defined as a crack of the same size as the local notch strain field. Crack initiation life is obtained from smooth specimens as the life to initiate a crack equal to the size of cracks in the notched member. Notch plasticity effects are included in analyzing the crack propagation phase. Crack propagation life is determined by integrating the equation that relates crack growth rate to ΔJ from the initiated to final crack size. Total fatigue life estimates are made by combining crack initiation and crack propagation phases. These agree within a factor of 1.5 with measured lives for the two notch geometries.  相似文献   

14.
This paper deals with the fatigue behaviour of a short fibre reinforced thermoplastic under multi‐axial cyclic stress. Based on experimental results on notched and plain specimens, limits of existing methods for the fatigue life estimation in the design process of components exposed to complex multi‐axial loads were investigated. During the manufacturing process of short fibre reinforced thermoplastic components, a moderately anisotropic behaviour in stiffness and strength arises. Because of the material's anisotropy, classical failure hypotheses for the assessment of multiaxial load cases do not apply. In this study, a fatigue failure hypothesis was implemented that assesses the stress components in accordance with the correlating fatigue strengths in the material coordinate system, considering potential interaction between the stress components. Striving for a verified multi‐usable fatigue life assessment method, multiaxial load cases were examined experimentally. The experimental results on unnotched and notched specimens and the fatigue life estimation on the basis of the Tsai‐Wu‐failure hypothesis will be presented.  相似文献   

15.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

16.
Nowadays cast iron components are widely used in highly stressed structures. Component lifetime is strongly influenced by inhomogeneities caused by the material's microstructure and the manufacturing process (graphite particles, (micro‐)shrinkage pores, inclusions). Inhomogeneities often act as a fatigue crack starter. Lifetime until failure may be divided into stages for crack initiation, short and long crack growth. Initiation of a crack of technical size (a ≈ 1mm) is often dominated by the growth of short cracks. The paper presents an approach to analyse the mechanically short fatigue crack growth based on elastic‐plastic fracture mechanics considering the closure behaviour of short cracks. The effective J‐integral range is used as a crack driving force. Finite element analysis results as well as analytical solutions to approximate the crack driving force are presented. The application of the approach is successfully demonstrated for cast iron material EN‐GJS‐400‐18‐LT using data from fatigue tests, microstructure and fracture surface analyses to assess the fatigue life.  相似文献   

17.
Small-crack effects were investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad aluminium alloys. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue and small-crack tests were conducted on single-edge-notch tension (SENT) specimens and large-crack tests were conducted on middle-crack tension specimens under constant-amplitude and Mini-TWIST spectrum loading. A pronounced small-crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite-element and weight-function methods were used to determine stress intensity factors, and to develop equations for surface and corner cracks at the notch in the SENT specimen. (Part I was on the experimental and fracture mechanics analyses and was published in Fatigue Fract. Engng Mater. Struct. 21 , 1289–1306, 1998.) This part focuses on a crack closure and fatigue analysis of the data presented in Part I. A plasticity-induced crack-closure model was used to correlate large-crack growth rate data to develop the baseline effective stress intensity factor range (Δ K eff ) against rate relations for each material, ignoring the large-crack threshold. The model was then used with the Δ K eff rate relation and the stress intensity factors for surface or corner cracks to make fatigue life predictions. The initial defect sizes chosen in the fatigue analyses were similar to those that initiated failure in the specimens. Predicted small-crack growth rates and fatigue lives agreed well with experiments.  相似文献   

18.
This paper reports a study of fatigue crack growth and coalescing behaviour at semi-elliptical cracks in the stress concentration region of steel plates with fillet shoulders or fillet welds. Fatigue tests were carried out on machined plate specimens with a fillet geometry similar to a fillet welded joint. These specimens were notched and precracked to provide single and multiple coplanar semi-elliptical surface cracks at the fillet toe region. Finite element stress analysis results were used to obtain approximate Mk factors (i.e.: stress concentration magnification factors) for the fillet toe geometry with a semi-elliptical surface crack. An analytical model was developed to simulate crack shape development and growth to failure in the case of multiple coplanar semi-elliptical cracks. In this model, a simple crack coalescing procedure is applied to merge coplanar cracks when they meet by recharacterising the coplanar cracks into a single semi-elliptical crack. Alternative crack growth laws were investigated and comparisons made between actual and predicted shape developments and lives.  相似文献   

19.
Abstract— Biaxial fatigue tests were conducted on a high strength spring steel using hour-glass shaped smooth specimens. Four types of loading system were employed, i.e. (a) fully reversed cyclic torsion, (b) uniaxial push—pull, (c) fully reversed torsion with a superimposed axial static tension or compression stress, and (d) uniaxial push—pull with a superimposed static torque, to evaluate the effects of mean stress on the cyclic stress—strain response and short fatigue crack growth behaviour. Experimental results indicate that a biaxial mean stress has no apparent influence on the stress—strain response in torsion, however a superimposed tensile mean stress was detrimental to torsional fatigue strength. Similarly a superimposed static shear stress reduced the push—pull fatigue lifetime. A compressive mean stress was seen to be beneficial to torsion fatigue life. The role of mean stress on fatigue lifetime, under mixed mode loading, was investigated through experimental observations and theoretical analyses of short crack initiation and propagation. Using a plastic replication technique the effects of biaxial mean stress on both Stage I (mode II) and Stage II (mode I) short cracks were evaluated and analysed in detail. A two stage biaxial short fatigue crack growth model incorporating the influence of mean stress was subsequently developed and applied to correlate data of crack growth rate and fatigue life.  相似文献   

20.
The stress intensity factors (SIF) associated with branched fatigue cracks can be considerably smaller than that of a straight crack with the same projected length, causing crack growth retardation or even arrest. This crack branching mechanism can quantitatively explain retardation effects even when plasticity induced crack closure cannot be applied, e.g. in high R-ratio or in some plane strain controlled fatigue crack growth problems. Analytical solutions have been obtained for the SIF of branched cracks, however, numerical methods such as Finite Elements (FE) or Boundary Elements (BE) are the only means to predict the subsequent curved propagation behavior. In this work, a FE program is developed to calculate the path and associated SIF of branched cracks, validated through experiments on 4340 steel ESE(T) specimens. From these results, semi-empirical crack retardation equations are proposed to model the retardation factor along the crack path. The model also considers the possible interaction between crack branching and other retardation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号