共查询到20条相似文献,搜索用时 15 毫秒
1.
Generalization of adaptive neuro-fuzzy inference systems 总被引:8,自引:0,他引:8
The adaptive network-based fuzzy inference systems (ANFIS) of Jang (1993) is extended to the generalized ANFIS (GANFIS) by proposing a generalized fuzzy model (GFM) and considering a generalized radial basis function (GRBF) network. The GFM encompasses both the Takagi-Sugeno (TS)-model and the compositional rule of inference (CRI) model. The conditions by which the proposed GFM converts to TS-model or the CRI-model are presented. The basis function in GRBF is a generalized Gaussian function of three parameters. The architecture of the GRBF network is devised to learn the parameters of GFM, where the GRBF network and GFM have been proved to be functionally equivalent. It Is shown that GRBF network can be reduced to either the standard RBF or the Hunt's RBF network. The issue of the normalized versus the non-normalized GRBF networks is investigated in the context of GANFIS. An interesting property of symmetry on the error surface of GRBF network is investigated. The proposed GANFIS is applied to the modeling of a multivariable system like stock market. 相似文献
2.
Emrah Dogan Mahnaz Gumrukcuoglu Mehmet Sandalci Mucahit Opan 《Engineering Applications of Artificial Intelligence》2010,23(6):961-967
Adaptive neuro-fuzzy inference system (ANFIS) models are proposed as an alternative approach of evaporation estimation for Yuvacik Dam. This study has three objectives: (1) to develop ANFIS models to estimate daily pan evaporation from measured meteorological data; (2) to compare the ANFIS model to the multiple linear regression (MLR) model; and (3) to evaluate the potential of ANFIS model. Various combinations of daily meteorological data, namely air temperature, relative humidity, solar radiation and wind speed, are used as inputs to the ANFIS so as to evaluate the degree of effect of each of these variables on daily pan evaporation. The results of the ANFIS model are compared with MLR model. Mean square error, average absolute relative error and coefficient of determination statistics are used as comparison criteria for the evaluation of the model performances. The ANFIS technique whose inputs are solar radiation, air temperature, relative humidity and wind speed, gives mean square errors of 0.181 mm, average absolute relative errors of 9.590% mm, and determination coefficient of 0.958 for Yuvacik Dam station, respectively. Based on the comparisons, it was found that the ANFIS technique could be employed successfully in modelling evaporation process from the available climatic data. 相似文献
3.
This paper presents a method to identify the structure of generalized adaptive neuro-fuzzy inference systems (GANFISs). The structure of GANFIS consists of a number of generalized radial basis function (GRBF) units. The radial basis functions are irregularly distributed in the form of hyper-patches in the input-output space. The minimum number of GRBF units is selected based on a heuristic using the fuzzy curve. For structure identification, a new criterion called structure identification criterion (SIC) is proposed. SIC deals with a trade off between performance and computational complexity of the GANFIS model. The computational complexity of gradient descent learning is formulated based on simulation study. Three methods of initialization of GANFIS, viz., fuzzy curve, fuzzy C-means in x/spl times/y space and modified mountain clustering have been compared in terms of cluster validity measure, Akaike's information criterion (AIC) and the proposed SIC. 相似文献
4.
《Expert systems with applications》2007,32(2):458-468
Purpose. To develop an automated classifier based on adaptive neuro-fuzzy inference system (ANFIS) to differentiate between normal and glaucomatous eyes from the quantitative assessment of summary data reports of the Stratus optical coherence tomography (OCT) in Taiwan Chinese population.Methods. This observational non-interventional, cross-sectional, case–control study included one randomly selected eye from each of the 341 study participants (135 patients with glaucoma and 206 healthy controls). Measurements of glaucoma variables (retinal nerve fiber layer thickness and optic nerve head topography) were obtained by Stratus OCT. Decision making was performed in two stages: feature extraction using the orthogonal array and the selected variables were treated as the feeder to adaptive neuro-fuzzy inference system (ANFIS), which was trained with the back-propagation gradient descent method in combination with the least squares method. With the Stratus OCT parameters used as input, receiver operative characteristic (ROC) curves were generated by ANFIS to classify eyes as either glaucomatous or normal.Results. The mean deviation was −0.67 ± 0.62 dB in the normal group and −5.87 ± 6.48 dB in the glaucoma group (P < 0.0001). The inferior quadrant thickness was the best individual parameter for differentiating between normal and glaucomatous eyes (ROC area, 0.887). With ANFIS technique, the ROC area was increased to 0.925.Conclusions. With Stratus OCT parameters used as input, the results from ANFIS showed promise for discriminating between glaucomatous and normal eyes. ANFIS may be preferable since the output concludes the if–then rules and membership functions, which enhances the readability of the output. 相似文献
5.
Tarek Benmiloud 《Neural computing & applications》2012,21(3):575-582
This paper introduces a new type of Adaptive Neuro-fuzzy System, denoted as IANFIS (Improved Adaptive Neuro-fuszzy Inference
System). The new structure is realized by the insertion of the error of training of ANFIS in the third layer of this system.
The recurrence of the error of training will increase the capability of convergence and the robustness of ANFIS. The proposed
IANFIS system is applied to make the identification of nonlinear functions, and the obtained results are compared with these
obtained by usual ANFIS to verify the effectiveness of the proposed adaptive neuro-fuzzy system. 相似文献
6.
Neural Computing and Applications - In this paper, the applicability of adaptive neuro-fuzzy inference system (ANFIS) for the prediction of groutability of granular soils with cement-based grouts... 相似文献
7.
Ahmet Kolus Philippe-Antoine Dubé Daniel Imbeau Richard Labib Denise Dubeau 《Applied ergonomics》2014
In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. 相似文献
8.
The work presented in this paper deals with the problem of autonomous and intelligent navigation of mobile manipulator, where the unavailability of a complete mathematical model of robot systems and uncertainties of sensor data make the used of approximate reasoning to the design of autonomous motion control very attractive.A modular fuzzy navigation method in changing and dynamic unstructured environments has been developed. For a manipulator arm, we apply the robust adaptive fuzzy reactive motion planning developed in [J.B. Mbede, X. Huang, M. Wang, Robust neuro-fuzzy sensor-based motion control among dynamic obstacles for robot manipulators, IEEE Transactions on Fuzzy Systems 11 (2) (2003) 249-261]. But for the vehicle platform, we combine the advantages of probabilistic roadmap as global planner and fuzzy reactive based on idea of elastic band. This fuzzy local planner based on a computational efficient processing scheme maintains a permanent flexible path between two nodes in network generated by a probabilistic roadmap approach. In order to consider the compatibility of stabilization, mobilization and manipulation, we add the input of system stability in vehicle fuzzy navigation so that the mobile manipulator can avoid stably unknown and/or dynamic obstacles. The purpose of an integration of robust controller and modified Elman neural network (MENN) is to deal with uncertainties, which can be translated in the output membership functions of fuzzy systems. 相似文献
9.
The paper demonstrates an efficient use of intelligent system for solving the classification problem in the sector of health insurance. A model based on adaptive neuro-fuzzy inference system (ANFIS) is proposed to deal with the fuzziness in the real-life environments. This approach enables the interpretation of majority of health factors of an insurance seeker through a set of fuzzy rules to determine the degree of risk to an individual. A fuzzy neural network has been trained with fuzzy inputs like age, occupation, family size, smoking habits, drinking habits, diabetes history, heart disease and other relevant inputs of individual for risk calculation. The model gets importance in health insurance sector because risk determination is fuzzy in nature, and fuzzy calculations are done more accurately by machines rather than human beings especially for the problems which are repetitive in nature and have large number of vague parameters. The proposed model can help the insurance seeker to identify the degree of risk he is having if he is not taking health insurance. This serves a dual purpose of attracting the insurance seeker to acquire the insurance and facilitate generating business to insurance company. Indicative results are presented and discussed in detail in terms of accuracy and solution interpretability. 相似文献
10.
Karim Salahshoor Majid Soleimani Khoshro Mojtaba Kordestani 《Simulation Modelling Practice and Theory》2011,19(5):1280-1293
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. An innovative data-driven FDD methodology has been presented in this paper on the basis of a distributed configuration of three adaptive neuro-fuzzy inference system (ANFIS) classifiers for an industrial 440 MW power plant steam turbine with once-through Benson type boiler. Each ANFIS classifier has been developed for a dedicated category of four steam turbine faults. A preliminary set of conceptual and experimental studies has been conducted to realize such fault categorization scheme. A proper selection of four measured variables has been configured to feed each ANFIS classifier with the most influential diagnostic information. This consequently leads to a simple distributed FDD system, facilitating the training and testing phases and yet prevents operational deficiency due to possible cross-correlated measured data effects. A diverse set of test scenarios has been carried out to illustrate the successful diagnostic performances of the proposed FDD system against 12 major faults under challenging noise corrupted measurements and data deformation corresponding to a specific fault time history pattern. 相似文献
11.
Elif Derya Übeyli 《Expert systems with applications》2009,36(5):9031-9038
This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for automatic detection of electroencephalographic changes. Decision making was performed in two stages: feature extraction by computation of Lyapunov exponents and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Five types of electroencephalogram (EEG) signals were classified by five ANFIS classifiers. To improve diagnostic accuracy, the sixth ANFIS classifier (combining ANFIS) was trained using the outputs of the five ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the EEG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the EEG signals. 相似文献
12.
In this paper, an intelligent diagnosis for fault gear identification and classification based on vibration signal using discrete wavelet transform and adaptive neuro-fuzzy inference system (ANFIS) is presented. The discrete wavelet transform (DWT) technique plays one of the important roles for signal feature extraction in the proposed system. The abnormal transient signals will show in different decomposition levels and can be used to recognize the various faults by the DWT figure. However, many fault conditions are hard to inspect accurately by the naked eye. In the present study, the feature extraction method based on discrete wavelet transform with energy spectrum is proposed. The different order wavelets are considered to identify fault features accurately. The database is established by feature vectors of energy spectrum which are used as input pattern in the training and identification process. Furthermore, the ANFIS is proposed to identify and classify the fault gear positions and the gear fault conditions in the fault diagnosis system. The proposed ANFIS includes both the fuzzy logic qualitative approximation and the adaptive neural network capability. The experimental results verified that the proposed ANFIS has more possibilities in fault gear identification. The ANFIS achieved an accuracy identification rate which was more satisfactory than traditional vision inspection in the proposed system. 相似文献
13.
This paper presents a self-adaptive neuro-fuzzy inference system (SANFIS) that is capable of self-adapting and self-organizing its internal structure to acquire a parsimonious rule-base for interpreting the embedded knowledge of a system from the given training data set. A connectionist topology of fuzzy basis functions with their universal approximation capability is served as a fundamental SANFIS architecture that provides an elasticity to be extended to all existing fuzzy models whose consequent could be fuzzy term sets, fuzzy singletons, or functions of linear combination of input variables. Without a priori knowledge of the distribution of the training data set, a novel mapping-constrained agglomerative clustering algorithm is devised to reveal the true cluster configuration in a single pass for an initial SANFIS construction, estimating the location and variance of each cluster. Subsequently, a fast recursive linear/nonlinear least-squares algorithm is performed to further accelerate the learning convergence and improve the system performance. Good generalization capability, fast learning convergence and compact comprehensible knowledge representation summarize the strength of SANFIS. Computer simulations for the Iris, Wisconsin breast cancer, and wine classifications show that SANFIS achieves significant improvements in terms of learning convergence, higher accuracy in recognition, and a parsimonious architecture. 相似文献
14.
Bridge risks are often evaluated periodically so that the bridges with high risks can be maintained timely. This paper develops an adaptive neuro-fuzzy system (ANFIS) using 506 bridge maintenance projects for bridge risk assessment, which can help Highways Agency to determine the maintenance priority ranking of bridge structures more systematically, more efficiently and more economically in comparison with the existing bridge risk assessment methodologies which require a large number of subjective judgments from bridge experts to build the complicated nonlinear relationships between bridge risk score and risk ratings. The ANFIS proves to be very effective in modelling bridge risks and performs better than artificial neural networks (ANN) and multiple regression analysis (MRA). 相似文献
15.
In any region, to begin generating electricity from wind energy, it is necessary to determine the 1-year distribution characteristics
of wind speed. For this aim, a wind observation station must be constructed and 1-year wind speed and direction data must
be collected. For determining the distribution characteristics, the collected data must be statistically analyzed. The continuity
and reliability of the data are quite important for such studies on the days when possible faults can occur in any part of
the observation unit or on days when, the system is on maintenance, it is not possible to record any data. In this study,
it is assumed that the station had not worked at some randomly chosen days and that for these days no data could be recorded.
The missing data are predicted using the data that were recorded before and after fault or maintenance by an adaptive neuro-fuzzy
inference system (ANFIS). It is seen that ANFIS is successful for such a study. 相似文献
16.
M. Onder Efe A. Murat Fiskiran Okyay Kaynak 《International journal of systems science》2013,44(4):513-521
This paper presents a novel training algorithm for adaptive neuro-fuzzy inference systems. The algorithm combines the error back-propagation algorithm with the variable structure systems approach. Expressing the parameter update rule as a dynamic system in continuous time and applying sliding mode control (SMC) methodology to the dynamic model of the gradient based training procedure results in the parameter stabilizing part of training algorithm. The proposed combination therefore exhibits a degree of robustness to the unmodelled multivariable internal dynamics of the gradient-based training algorithm. With conventional training procedures, the excitation of this dynamics during a training cycle can lead to instability, which may be difficult to alleviate owing to the multidimensionality of the solution space and the ambiguities concerning the environmental conditions. This paper shows that a neuro-fuzzy model can be trained such that the adjustable parameter values are forced to settle down (parameter stabilization) while minimizing an appropriate cost function (cost optimization), which is based on state tracking performance. In the application example, trajectory control of a two degrees of freedom direct drive robotic manipulator is considered. As the controller, an adaptive neuro-fuzzy inference mechanism is used and, in the parameter tuning, the proposed algorithm is utilized. 相似文献
17.
Muhammad Rizal Jaharah A. Ghani Mohd Zaki Nuawi Che Hassan Che Haron 《Applied Soft Computing》2013,13(4):1960-1968
Tool wear is a detrimental factor that affects the quality and tolerance of machined parts. Having an accurate prediction of tool wear is important for machining industries to maintain the machined surface quality and can consequently reduce inspection costs and increase productivity. Online and real-time tool wear prediction is possible due to developments in sensor technology. Recently, various sensors and methods have been proposed for the development of tool wear monitoring systems. In this study, an online tool wear monitoring system was proposed using a strain gauge-type sensor due to its simplicity and low cost. A model, based on the adaptive network-based fuzzy inference system (ANFIS), and a new statistical signal analysis method, the I-kaz method, were used to predict tool wear during a turning process. In order to develop the ANFIS model, the cutting speed, depth of cut, feed rate and I-kaz coefficient from the signals of each turning process were taken as inputs, and the flank wear value for the cutting edge was an output of the model. It was found that the prediction usually accurate if the correlation of coefficients and the average errors were in the range of 0.989–0.995 and 2.30–5.08% respectively for the developed model. The proposed model is efficient and low-cost which can be used in the machining industry for online prediction of the cutting tool wear progression, but the accuracy of the model depends upon the training and testing data. 相似文献
18.
Abdulnasir Yildiz Mehmet Akin Mustafa Poyraz Gokhan Kirbas 《Expert systems with applications》2009,36(4):7390-7399
This paper presents the application of adaptive neuro-fuzzy inference system (ANFIS) model for estimation of vigilance level by using electroencephalogram (EEG) signals recorded during transition from wakefulness to sleep. The developed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. This study comprises of three stages. In the first stage, three types of EEG signals (alert signal, drowsy signal and sleep signal) were obtained from 30 healthy subjects. In the second stage, for feature extraction, obtained EEG signals were separated to its sub-bands using discrete wavelet transform (DWT). Then, entropy of each sub-band was calculated using Shannon entropy algorithm. In the third stage, the ANFIS was trained with the back-propagation gradient descent method in combination with least squares method. The extracted features of three types of EEG signals were used as input patterns of the three ANFIS classifiers. In order to improve estimation accuracy, the fourth ANFIS classifier (combining ANFIS) was trained using the outputs of the three ANFIS classifiers as input data. The performance of the ANFIS model was tested using the EEG data obtained from 12 healthy subjects that have not been used for the training. The results confirmed that the developed ANFIS classifier has potential for estimation of vigilance level by using EEG signals. 相似文献
19.
《Applied Soft Computing》2008,8(2):928-936
Conventionally, the multiple linear regression procedure has been known as the most popular models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, intelligence system approaches such as artificial neural network (ANN) and neuro-fuzzy methods have been used successfully for time series modelling. In most instances for neural networks, multi layer perceptrons (MLPs) that are trained with the back-propagation algorithm have been used. The major shortcoming of this approach is that the knowledge contained in the trained networks is difficult to interpret. Using neuro-fuzzy approaches, which enable the information that is stored in trained networks to be expressed in the form of a fuzzy rule base, would help to overcome this issue. In the present study, a time series neuro-fuzzy model is proposed that is capable of exploiting the strengths of traditional time series approaches. The aim of this article is to investigate the potential of a neuro-fuzzy system with a Sugeno inference engine, considering different numbers of membership functions. Three rivers have been selected and daily prediction for them was applied. For better judgment, outcomes of the network have been compared to an autoregressive model. 相似文献
20.
王辉 《计算机工程与应用》2008,44(6):240-242
针对道路交通系统的非线性和随机性特点,设计一种具有学习能力的车速预测方法。首先,对交通流历史特征数据采用模糊聚类的方法进行状态分类并确立模型结构。然后,建立交通流状态预测的自适应神经模糊系统,以实测交通流数据进行系统参数优化训练。最后,利用MATLAB进行系统的仿真及检测。检测的预测结果表明系统具有良好的应用性能。 相似文献