首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Oxo-delta 5-steroid isomerase (KSI, EC 5.3.3.1) from Pseudomonas testosteroni catalyzes the isomerization of a variety of 3-oxo-delta 5-steroids to their conjugated Delta4-isomers through the formation of an intermediate dienolate ion. It has previously been found in our laboratory that the aromatic ring of Phe-101 is important for catalysis. The present work extends these studies. Two double-mutant KSIs (D38E/F101L and D38E/F101A) were prepared to compare the free energy profiles for the reactions catalyzed by these mutants and by D38E. Both double-mutant KSIs show reduced values of kcat at pH 7 compared to D38E ( approximately 25-fold for D38E/F101L and approximately 200-fold for D38E/F101A), similar to the reduced values for F101L and F101A relative to KSI ( approximately 30-fold for F101L and approximately 270-fold for F101A). Free energy profiles for the reactions catalyzed by D38E/F101L and D38E/F101A indicate that the bound transition state(s) and bound intermediate are destabilized when the large aromatic residue Phe-101 in D38E KSI is replaced by the smaller residues Leu or Ala. The pH-rate profiles for D38E, D38E/F101L, and D38E/F101A in the pH range 3.9-8.7 show that the pKa of the catalytic base (Glu-38) is perturbed. In addition, these mutants have significant catalytic activity in the low-pH region.  相似文献   

2.
The effect of temperature on ligand photodissociation from protoheme and the heme proteins hemoglobin (Hb) and myoglobin (Mb) has been examined. The quantum yield of photodissociation (phi) is greater at 40 degrees than at 0 degrees; in general, larger increases are seen in the less photosensitive complexes, while phi does not change in the most photosensitive complexes. The ratio of phi at 40 degrees to phi at 0 degrees is 1.8 for HbCO, 2.3 for n-butyl isocyanide Hb, 2.7 for HbO2, and 1.3 for HbNO, with initial phi values of 0.38, 0.26, 0.028, and 0.003, respectively. This pattern of quantum yield increases is seen in protoheme as well as Hb and Mb ligand photolysis. The allosteric effector inositol hexaphosphate increases the quantum yield of lignad photolysis from hemoglobin. As with temperature, inositol hexaphosphate addition has a larger effect on complexes of low quantum yield; phi increases 1.2-fold for HbCO and 2.2-fold for HbO2 at 0 degrees. The results are discussed in terms of a model containing a photoexcited intermediate (Phillipson, P.E., Ackerson, B.J., and Wyman, J. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 1550-1553).  相似文献   

3.
The composition and stability constants of the complexes of Zn(II), Pb(II), Cd(II) and Cu(II) with hematoxylin have been studied using direct current polarography and differential pulse polarography. The results showed the formation of 1:2 (M:L) complexes for Zn(II) and Pb(II), and a 1:6 (M:L) complex for Cd(II). However, the formation of copper-hematoxylin complex is irreversible. The values of the formation constants for the above complexes at 298, 308 and 318K were calculated as well as the relevant thermodynamic parameters.  相似文献   

4.
The atypical variant of human butyrylcholinesterase has Gly in place of Asp 70. Patients with this D70G mutation respond abnormally to the muscle relaxant succinyldicholine, experiencing hours of apnea rather than the intended 3 min. Asp 70 is at the rim of the active site gorge 12 A from the active site Ser 198. An unanswered question in the literature is why the atypical variant has a 10-fold increase in Km for compounds with a single positive charge but a 100-fold increase in Km for compounds with two positive charges. We mutated residues Asp 70, Trp 82, Trp 231, Glu 197, and Tyr 332 and expressed mutant enzymes in mammalian cells. Steady-state kinetic parameters for hydrolysis of butyrylthiocholine, benzoylcholine, succinyldithiocholine, and o-nitrophenyl butyrate were determined. The wild type and the D70G mutant had identical k(cat) values for all substrates. Molecular modeling and molecular dynamics suggested that succinyldicholine could bind in two consecutive orientations in the active site gorge; formation of one complex caused a conformational change in the omega loop involving Asp 70 and Trp 82. We propose the formation of three enzyme-substrate intermediates preceding the acyl-enzyme intermediate; kinetic data support this contention. Substrates with a single positive charge interact with Asp 70 just once, whereas substrates with two positive charges, for example succinyldithiocholine, interact with Asp 70 in two complexes, thus explaining the 10- and 100-fold increases in Km in the D70G mutant.  相似文献   

5.
The interaction of the alpha subunit with the beta2 subunit of tryptophan synthase is known to be necessary for the activation of each subunit and for the catalytic efficiency of the alpha2beta2 complex. To elucidate the roles of hydrogen bonds in the interaction site between the alpha and beta subunits for subunit association, eight mutant alpha subunits at five hydrogen bonding residues (N104D, N104A, N108D, N108A, E134A, E135A, N157D, and N157A) were constructed, and the thermodynamic parameters of association with the beta subunit were obtained using a titration calorimeter. The N104D and N104A mutations remarkably decreased the stimulation activities, the association constants, and the association enthalpies. Although the association constant and the stimulation activities of E134A were reduced in the absence of salt, the change in the association enthalpy was relatively small, and the addition of salt could repair its defects. The substitutions at positions 135 and 157 did not affect the stimulation activity and decreased the Gibbs energy of association corresponding to the defect in 1 mol of hydrogen bond. The present results suggest that the alpha subunit which has a mutation at position 104 cannot fold into an intact conformation upon complex formation, resulting in reduced stimulation activities. The hydrogen bond with Asn-104, which is a conserved residue among 16 microorganisms, was especially important for alpha/beta interaction and mutual activation.  相似文献   

6.
The binding of a mixed-sequence pentadecamer PNA (peptide nucleic acid) containing all four nucleobases to the fully complementary as well as various singly mismatched RNA and DNA oligonucleotides has been systematically investigated using thermal denaturation and BIAcore surface-interaction techniques. The rate constants for association (k(a)) and dissociation (k(d)) of the duplex formation as well as the thermal stability (melting temperature, T(m)) of the duplexes have been determined. Upon binding to PNA tethered via a biotin-linker to streptavidin at the dextran/gold surface, DNA and RNA sequences containing single mismatches at various positions in the center resulted in increased dissociation and decreased association rate constants. T(m) values for PNA x RNA duplexes are on average 4 degrees C higher than for PNA x DNA duplexes and follow quantitatively the same variation with mismatches as do the PNA x DNA duplexes. Also a faster k(a) and a slower k(d) are found for PNA x RNA duplexes compared to the PNA x DNA duplexes. An overall fair correlation between T(m), k(a), and k(d) is found for a series of PNA x DNA and PNA x RNA duplexes although the determination of k(a) seemed to be prone to artifacts of the method and was not considered capable of providing absolute values representing the association rate constant in bulk solution.  相似文献   

7.
A series of 54 fluorogenic substrates have been synthesized and evaluated for tissue-type plasminogen activator (tPA) hydrolysis in an attempt to create efficient sensitive substrates for tPA and to investigate substrate structure-efficiency correlations. All substrates contain the 6-amino-1-naphthalenesulfonamide (ANSN) leaving group, Arg in the P1 position, various amino acids in the P2 and P3 positions, and various substituents in the sulfonamide moiety of the leaving group (P' position). The majority of substrates have relatively low K(M) values (< 100 microM), reaching as low as 2.6 microM, and reasonably high k(cat) values (up to 3.6 s(-1)). These substrates have higher affinity, higher hydrolysis rates, and higher efficiency for two-chain tPA than for the single-chain form of this enzyme. Analysis of the P3 structure influence on substrate efficiency demonstrates that compounds which contain D-isomers of N-blocked bulky amino acids, such as Phe, Leu, and Val, in this position are more efficient for tPA than substrates with N-unblocked small amino acids (Ser or Pro) in the P3 position. The second-order rate constants and k(cat) values for substrate hydrolysis increase with decreases in the P2 amino acid hydrophobicity in the following manner: Leu < Val and Gly < Ser < Pro. Substrates which contain an ANSN leaving group had a higher affinity for tPA than substrates with p-nitroaniline or 7-amino-4-methylcoumarin leaving groups. Analyses of substrate hydrolysis dependence on the substrate P' structure show that the k(cat) and the second-order rate constants increased with an increase in the size of monoalkyl substituent in the sulfonamide moiety, whereas substrates which contain either glycine methyl ester or a dialkyl group displayed the lowest efficiency for tPA. The substrate Boc-(p-F)Phe-Pro-Arg-ANSNHC2H5 allowed quantitation of tPA at a concentration as low as 1 pM, a concentration significantly lower than the plasma concentration of this protein. Evaluation of the activation of single-chain tPA by factor Xa demonstrates that prothrombinase is approximately 3-fold more efficient in activating sc-tPA than factor Xa alone, increasing the initial rate of activation from 0.0055 nM/s per 1 nM of factor Xa to 0.017 nM/s per 1 nM.  相似文献   

8.
The O2 and CO reactions with the heme, alpha-hydroxyheme, and verdoheme complexes of heme oxygenase have been studied. The heme complexes of heme oxygenase isoforms-1 and -2 have similar O2 and CO binding properties. The O2 affinities are very high, KO2 = 30-80 microM-1, which is 30-90-fold greater than those of mammalian myoglobins. The O2 association rate constants are similar to those for myoglobins (kO2' = 7-20 microM-1 s-1), whereas the O2 dissociation rates are remarkably slow (kO2 = 0.25 s-1), implying the presence of very favorable interactions between bound O2 and protein residues in the heme pocket. The CO affinities estimated for both isoforms are only 1-6-fold higher than the corresponding O2 affinities. Thus, heme oxygenase discriminates much more strongly against CO binding than either myoglobin or hemoglobin. The CO binding reactions with the ferrous alpha-hydroxyheme complex are similar to those of the protoheme complex, and hydroxylation at the alpha-meso position does not appear to affect the reactivity of the iron atom. In contrast, the CO affinities of the verdoheme complexes are >10,000 times weaker than those of the heme complexes because of a 100-fold slower association rate constant (kCO' approximately 0. 004 microM-1 s-1) and a 300-fold greater dissociation rate constant (kCO approximately 3 s-1) compared with the corresponding rate constants of the protoheme and alpha-hydroxyheme complexes. The positive charge on the verdoporphyrin ring causes a large decrease in reactivity of the iron.  相似文献   

9.
The crystal structures of three highly potent and selective low-molecular weight rigid peptidyl aldehyde inhibitors complexed with thrombin have been determined and refined to R values 0.152-0. 170 at 1.8-2.1 A resolution. Since the selectivity of two of the inhibitors was >1600 with respect to trypsin, the structures of trypsin-inhibited complexes of these inhibitors were also determined (R = 0.142-0.157 at 1.9-2.1 A resolution). The selectivity appears to reside in the inability of a benzenesulfonamide group to bind at the equivalent of the D-enantiomorphic S3 site of thrombin, which may be related to the lack of a 60-insertion loop in trypsin. All the inhibitors have a novel lactam moiety at the P3 position, while the two with greatest trypsin selectivity have a guanidinopiperidyl group at the P1 position that binds in the S1 specificity site. Differences in the binding constants of these inhibitors are correlated with their interactions with thrombin and trypsin. The kinetics of inhibition vary from slow to fast with thrombin and are fast in all cases with trypsin. The kinetics are examined in terms of the slow formation of a stable transition-state complex in a two-step mechanism. The structures of both thrombin and trypsin complexes show similar well-defined transition states in the S1 site and at the electrophilic carbon atom and Ser195OG. The trypsin structures, however, suggest that the first step in a two-step kinetic mechanism may involve formation of a weak transition-state complex, rather than binding dominated by the P2-P4 positions.  相似文献   

10.
Alteration of ligand binding to dopamine D2 receptors through activation of adenosine A2A receptors in rat striatal membranes has been studied by means of kinetic analysis. The binding of dopaminergic agonist [3H]quinpirole to rat striatal membranes was characterized by the constants Kd = 1.50+/-0.09 nM and Bmax = 115+/-2 fmol/mg of protein. The kinetic analyses revealed that the binding had at least two consecutive and kinetically distinguishable steps, the fast equilibrium of complex formation between receptor and agonist (KA = 5.9+/-1.7 nM), followed by a slow isomerization equilibrium (Ki = 0.06). Activation of adenosine A2A receptors by CGS 21680 caused enhancement of the rate [3H]quinpirole binding, altering mainly the formation of the receptor-ligand complexes (KA) as well as the isomerization rate of this complexes (ki), while the deisomerization rate (k[-i]) and the apparent dissociation rate remained unchanged.  相似文献   

11.
Intermediates in the catalytic mechanism of Aspergillus awamori glucoamylase (GA) were identified by studying pre-steady-state and steady-state kinetics of the wild-type GA/maltose and Trp120 -->Phe GA/maltotriose reactions in H2O and D2O. Pre-steady-state fluorescence signal analysis was carried out to ascertain the relative intrinsic fluorescence of the enzyme intermediates. A three-step minimal pathway for oligosaccharide hydrolysis represented by E + Gx (k1) reversible (k-1) EGX (k2)reversible(k-2) EP (kcat)--> E + P is proposed. The first step, represented by the association constant K1 (k1/k-1), depicts the fast formation of enzyme-substrate complex and is the primary factor in fluorescence quenching. A 2.7-fold increase in K1 with D2O as solvent is observed with both enzymes due to the cumulative effect of deuterium on complex hydrogen bonding at the active site. The second step further quenches the enzyme fluorescence and is identified as the hydrolytic step, forming an enzyme-product complex. Both k2 and k-2 values show similar 2-fold decreases in D2O for both enzymes, consistent with the microscopic reversibility of the hydrolytic reaction. The solvent isotopic effect on the hydrolytic step is likely due to either abstraction of an exchangeable proton from the general acid Glu179 or directed addition of water to the oxocarbonium ion intermediate by the general base Glu400. No significant isotope effect was observed on the steady-state kcat value for wild-type GA with maltose, indicating a ronhydrolytic step as rate-limiting. The third step, a posthydrolytic rate-determining step, is the product release as evident from steady-state kinetics with wild-type and Trp120-->Phe GAs using alpha-D-glucosyl fluoride.  相似文献   

12.
RD Beauchamp  HM Sheng  JY Shao  EA Thompson  TC Ko 《Canadian Metallurgical Quarterly》1996,223(5):620-7; discussion 627-8
OBJECTIVE: The p21Cip1 protein is a potent stoichiometric inhibitor of cyclin-dependent kinase activity, and p21Cip1 mRNA expression is localized to the nonproliferative compartment of the intestinal villus, suggesting an in vivo growth-inhibitory role in the gut. The authors determined whether nontransformed rat intestinal epithelial cells (IECs) underwent reversible cell cycle arrest by contact inhibition, and determined whether increases in the relative amount of p21 associated with cyclin D/Cdk4 protein complexes were associated with cell growth arrest. METHODS: Density arrest was achieved by prolonged culture IEC-6 in confluent conditions (5 or more days). Release from density arrest was achieved by detaching the cells from the culture plate and reseeding them at a 1:4 ratio. The DNA synthesis was estimated by [3H]-thymidine incorporation and expressed as mean plus or minus standard error of the mean (n = 4). Cyclin D1, Cdk4, and p21 mRNA and protein levels were determined by standard Northern and Western blot analyses, respectively. Cyclin D1, Cdk4, and p21 protein complex formation was analyzed by immunoprecipitating the complexes from cell lysates with an antibody to one of the constituents, followed by SDS polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis of the precipitated complexes using antibodies to the other proteins. The kinase activity of the immunoprecipitated Cdk4 was determined using recombinant Rb as substrate. RESULTS: The IEC-6[3H]-thymidine incorporation was decreased 7.5-fold from day 1 confluence to day 7 of confluence. Twenty-four hours after release from density arrest, there was a 43-fold increase in [3H]-thymidine incorporation. Cyclin D1 and Cdk4 mRNA levels remained relatively constant during contact inhibition, whereas immunoblotting showed that the levels of cyclin D1 and Cdk4 proteins decreased by 70.9% and 68.7%, respectively, comparing day 3 with day 9 during density arrest. The levels of cyclin D1 increased 5.8-fold and Cdk4 increased by 4.4-fold by 24 hours after reseeding the day 9 density-arrested cultures, coincident with the increase in DNA synthesis. The amount of p21 associated with the cyclin D1 and Cdk4 complex in the density-arrested cells was 170% of that observed in the reseeded, proliferating cells. More important, the p21::Cdk4 ratio was 6.4-fold higher in the density-arrested (quiescent) cells as compared with rapidly proliferating cells by 24 hours after release from growth arrest. Recovery of Cdk4-dependent kinase activity occurred by 4 hours after release from growth arrest, coincident with decreased binding of p21 to the complex. CONCLUSIONS: Intestinal epithelial cells in culture can undergo density-dependent growth arrest. This process involves downregulation of cyclin D1 and Cdk4 at the level of protein expression, whereas the mRNA levels remain relatively unchanged. Further, during contact inhibition, there is more p21 associated with cyclin D1/Cdk4, which further contributes to the inhibition of the kinase complex. The authors also have shown that the process of contact inhibition is reversible, which may explain partly the ability of the intestinal epithelium to increase proliferative activity in response to injury.  相似文献   

13.
The inhibition of peptide bond formation by spiramycin was studied in an in vitro system derived from Escherichia coli. Peptide bonds are formed between puromycin (S) and Ac-Phe-tRNA, which is a component of complex C, i.e., of the [Ac-Phe-tRNA-70S ribosome-poly(U)] complex, according to the puromycin reaction: C+S (Ks)<==>CS (k3)==>C'+P [Synetos, D., & Coutsogeorgopoulos, C. (1987) Biochim. Biophys. Acta 923, 275-285]. It is shown that spiramycin (A) reacts with complex C and forms the spiramycin complex C*A, which is inactive toward puromycin. C*A is the tightest complex formed between complex C and any of a number of antibiotics, such as chloramphenicol, blasticidin S, lincomycin, or sparsomycin. C*A remains stable following gel chromatography on Sephadex G-200 and sucrose gradient ultracentrifugation. Detailed kinetic study suggests that C*A is formed in a variation of a two-step mechanism in which the initial encounter complex CA is kinetically insignificant and C*A is the product of a conformational change of complex CA according to the equation, C+A (kassoc)<==>(kdissoc) C*A. The rate constants of this reaction (spiramycin reaction) are kassoc = 3.0 x 10(4) M-1 s-1 and kdissoc = 5.0 x 10(-5) s-1. Such values allow the classification of spiramycin as a slow-binding, slowly reversible inhibitor; they also lead to the calculation of an apparent overall dissociation constant equal to 1.8 nM for the C*A complex. Furthermore, they render spiramycin a useful tool in the study of antibiotic action on protein synthesis in vitro. Thus, the spiramycin reaction, in conjunction with the puromycin reaction, is applied (i) to detect a strong preincubation effect exerted by chloramphenicol and lincomycin (this effect constitutes further evidence that these two antibiotics combine with complex C as slow-binding inhibitors) and (ii) to determine the rate constant for the regeneration (k7 = 2.0 x 10(-3) s-1) of complex C from the sparsomycin complex C*I [Theocharis, D. A., & Coutsogeorgopoulos, C. (1992) Biochemistry 31, 5861-5868] according to the equation, C+I (Ki)<==>CI (k6)<==>(k7) C*I. The determination of k7 enables us to calculate the apparent association rate constant of sparsomycin, (k7/Ki') = 1.0 x 10(5) M-1 s-1, where Ki' = Ki(k7/k6 + k7). It is also shown that Ac-Phe-tRNA bound to the sparsomycin complex C*I is protected against attack by hydroxylamine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Single, extrinsic, environmentally sensitive fluorophores can be used to quantitate formation of protein-protein complexes. These can be prepared semi-synthetically by covalent coupling to single cysteine mutations introduced at positions where the fluorophore is predicted to respond to formation of the complex without adversely affecting the interaction. The three-dimensional structure of a protein-protein interface can be used to select such locations by identifying residues that are located at the edge of a buried interfacial region, and are in partial steric contact with both partners as indicated by a change in their static solvent-accessible surface area upon complex formation. Using this design approach, cysteine mutations were introduced into the B1 domain of protein G, which successfully monitor complex formation with minimal interference. Such constructs have great utility in the analysis of solution properties of interface mutants.  相似文献   

15.
The non-claret disjunctional protein (Ncd) is a kinesin-related microtubule motor that moves toward the negative end of microtubules. The kinetic mechanism of the monomer motor domain, residues 335-700, satisfied a simple scheme for the binding of 2'-3'-O-(N-methylanthraniloyl) (MANT) ATP, the hydrolysis step, and the binding and release of MANT ADP, where T, D, and Pi refer to nucleotide triphosphate, nucleotide diphosphate, and inorganic phosphate, respectively, and MtN is the complex of an Ncd motor domain with a microtubule site. Rate constants k1 and k-4 are the rates of a first order step, an isomerization induced by nucleotide binding. The apparent second order rate constants for the binding steps are 1.5 x 10(6) M-1 s-1 for MANT ATP and 3.5 x 10(6) M-1 s-1 for MANT ADP (conditions, 50 mM NaCl, pH 6.9, 21 degrees C). The rate constant of the hydrolysis step (k2) was obtained from quench flow measurements of the phosphate burst phase corrected for the contribution of the rate of product release to the transient rate constant. The rate of phosphate dissociation was not measured; the value was assigned to account for a steady state rate of 3 s-1. The MtN complex is dissociated by ATP at a rate of 10 s-1 based on light scattering measurements. Dissociation constants of Ncd-nucleotide complexes from microtubules increased in the order adenosine 5'-O-(thiotriphosphate) (ATPgammaS) < ADP-AlF4 < ATP < ADP < ADP-vanadate. Comparison of the properties of Ncd with a monomeric kinesin K332 (Ma and Taylor (1997) J. Biol. Chem. 272, 717-723) showed a close similarity, except that the rate constants for the hydrolysis and ADP release steps and the steady state rate are approximately 15-20 times smaller for Ncd. There are two differences that may affect the reaction pathway. The rate of dissociation of MtN by ATP is comparable to the rate of the hydrolysis step, and N.T may dissociate in the cycle, whereas for kinesin, dissociation occurs after hydrolysis. The rate of dissociation of MtN by ADP is larger than the rate of ADP release from MtN.D, whereas for the microtubule-kinesin complex, the rate of dissociation by ADP is smaller than the rate of ADP release. The monomeric Mt.Ncd complex is not processive.  相似文献   

16.
A series of charge reversal mutations in a highly conserved acidic patch on the surface of Anabaena ferredoxin (Fd), comprising residues D67, D68, and D69, have been constructed by site-directed mutagenesis. One such mutant, D68K, has a rate constant for electron transfer (et) to Anabaena ferredoxin:NADP+ reductase (FNR) at low ionic strength (I = 12 mM) which is 2.5 times larger than wild type (9000 vs 3600 s-1). This mutant Fd became indistinguishable from the wild-type protein in its reactivity at I > or = 100 mM. The other mutants showed various degrees of impairment in their et reactions with FNR over the entire range of ionic strengths. The degrees of such impairment for the D67K and D69K mutants were similar to that of the double mutant D67K/D69K. The double mutant D68K/ D69K had et activity intermediate between these mutants and wild type, whereas incorporation of the "super" mutation, D68K, into the double mutant, resulting in the D67K/D68K/D69K triple mutant, did not significantly alter the impairment caused by the D67K/D69K double mutation. Binding constants for complex formation (Kd) between the oxidized mutant proteins and oxidized FNR (except for that of the triple mutant which was not measurable), and the kinetically determined Kd values for the intermediate Fdred:FNRox complex, showed no correlation with et rate constants or with the extent of charge reversal. These results indicate that hydrophobic interactions play a key role in determining complex stability. They also provide strong support for the contention that the specific protein/protein geometry within the Fdred:FNRox intermediate complex is the major determinant of the et rate constants in this series of mutants, and that this is optimized largely by hydrophobic rather than electrostatic interactions. When electrostatic forces are dominant, as they are at low ionic strength, this can lead to nonoptimal et orientations.  相似文献   

17.
This paper deals with the kinetic inhibition of six cephalosporinases (cephalosporin amido-beta-lactamhydrolase, EC 3.5.2.8) by carbenicillin. In previous cases, the inhibition has appeared usually to be competitive and slowly reversible. This makes it possible to measure the two terms of the ratio Ki=k5/k4;k4 and k5 being respectively the velocity constants of formation and destruction of the enzyme-inhibitor complex. A program was prepared which made it possible to obtain these constants from only one experiment. With ampicillin and cloxacillin, we verified that the reaction is faster, and that only Ki can be measured. These facts suggest that special precautions should be taken in order to obtain signigicant values for the constants governing inhibition.  相似文献   

18.
New functional activities for the p21 family of CDK inhibitors   总被引:2,自引:0,他引:2  
The association of cdk4 with D-type cyclins to form functional kinase complexes is comparatively inefficient. This has led to the suggestion that assembly might be a regulated step. In this report we demonstrate that the CDK inhibitors p21(CIP), p27(KIP), and p57(KIP2) all promote the association of cdk4 with the D-type cyclins. This effect is specific and does not occur with other cdk inhibitors or cdk-binding proteins. Both in vivo and in vitro, the abundance of assembled cdk4/cyclin D complex increases directly with increasing inhibitor levels. The promotion of assembly is not attributable to a simple cell cycle block and requires the function of both the cdk and cyclin-binding domains. Kinetic studies demonstrate that p21 and p27 lead to a 35- and 80-fold increase in K(a), respectively, mostly because of a decrease in K(off). At low concentrations, p21 promotes the assembly of active kinase complexes, whereas at higher concentrations, it inhibits activity. Moreover, immunodepletion experiments demonstrate that most of the active cdk4-associated kinase activity also associates with p21. To confirm these results in a natural setting, we examine the assembly of endogenous complexes in mammary epithelial cells after release from a G(0) arrest. In agreement with our other data, cyclin D1 and p21 bind concomitantly to cdk4 during the in vivo assembly of cdk4/cyclin D1 complexes. This complex assembly occurs in parallel to an increase in cyclin D1-associated kinase activity. Immunodepletion experiments demonstrate that most of the cellular cyclin D1-associated kinase activity is also p21 associated. Finally, we find that all three CIP/KIP inhibitors target cdk4 and cyclin D1 to the nucleus. We suggest that in addition to their roles as inhibitors, the p21 family of proteins, originally identified as inhibitors, may also have roles as adaptor proteins that assemble and program kinase complexes for specific functions.  相似文献   

19.
Previous studies, and the three-dimensional structure of Anabaena PCC 7119 ferredoxin-NADP+ reductase (FNR), indicate that the positive charge of Lys75 might be directly involved in the interaction between FNR and its protein partners, ferredoxin (Fd) and flavodoxin (Fld). To assess this possibility, this residue has been replaced by another positively charged residue, Arg, by two uncharged residues, Gln and Ser, and by a negatively charged residue, Glu. UV-vis absorption, fluorescence, and CD spectroscopies of these FNR mutants (Lys75Arg, Lys75Gln, Lys75Ser, and Lys75Glu) indicate that all the mutated proteins folded properly and that significant protein structural rearrangements did not occur. Steady-state kinetic parameters for these FNR mutants, utilizing the diaphorase activity with DCPIP, indicate that Lys75 is not a critical residue for complex formation and electron transfer (ET) between FNR and NADP+ or NADPH. However, steady-state kinetic activities requiring complex formation and ET between FNR and Fd or Fld were appreciably affected when the positive charge at position of Lys75 was removed, and the ET reaction was not even measurable if a negatively charged residue was placed at this position. These kinetic parameters also suggest that it is complex formation that is affected by mutation. Consistent with this, when dissociation constants (Kd) for FNRox-Fdox (differential spectroscopy) and FNRox-Fdrd (laser flash photolysis) were measured, it was found that neutralization of the positive charge at position 75 increased the Kd values by 50-100-fold, and that no complex formation could be detected upon introduction of a negative charge at this position. Fast transient kinetic studies also corroborated the fact that removal of the positive charge at position 75 of FNR appreciably affects the complex formation process with its protein partners but indicates that ET is still achieved in all the reactions. This study thus clearly establishes the requirement of a positive charge at position Lys75 for complex formation during ET between FNR and its physiological protein partners. The results also suggest that the interaction of this residue with its protein partners is not structurally specific, since Lys75 can still be efficiently substituted by an arginine, but is definitely charge specific.  相似文献   

20.
For a large suite of consolidated sandstone samples low in shale content we have measured the permeability k, irreducible water saturation Swi, porosity phi, electrical-resistivity formation factor F, porosity by NMR, geometric-mean relaxation times T1g, and stretched-exponential relaxation times T1s. We find that T1g (or T1s) is the decisive parameter for the estimation of k or Swi of porous sandstones by other than direct measurements of these quantities. The additional use of phi or F brings appreciable, but not decisive, improvement. We show isovalue maps of the error factor delta, which show substantial regions of near-minimum values of delta and show basic compatibility of our estimators for permeability with different published estimators. The exponents of T1g (or T1s) in our power-law estimators and those of various published estimators for k are not very far from 2.0 if either or both of phi and F are also used in the estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号