首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conducting and transparent indium tin oxide (ITO) thin films were prepared on SiO2 glass and silicon substrates by pulsed laser ablation (PLA) from a 90 wt.% In2O3-10 wt.% SnO2 sintered ceramic target. The growths of ITO films under different oxygen pressures (PO2) ranging from 1×10−4–5×10−2 Torr at low substrate temperatures (Ts) between room temperature (RT) and 200°C were investigated. The opto-electrical properties of the films were found to be strongly dependent on the PO2 during the film deposition. Under a PO2 of 1×10−2 Torr, ITO films with low resistivity of 5.35×10−4 and 1.75×10−4 Ω cm were obtained at RT (25°C) and 200°C, respectively. The films exhibited high carrier density and reasonably high Hall mobility at the optimal PO2 region of 1×10−2 to 1.5×10−2 Torr. Optical transmittance in excess of 87% in the visible region of the solar spectrum was displayed by the films deposited at Po2≥1×10−2 Torr and it was significantly reduced as the PO2 decreases.  相似文献   

2.
Appreciable excited-state absorption (ESA) in U2+:CaF2 and Co2+:ZnSe saturable absorbers was measured at λ=1.573 μm by optical transmission versus light fluence curves of 30–40 ns long pulses. The ground- and excited-state absorption cross-sections obtained were (9.15±0.3)×10−20 and (3.6±0.2)×10−20 cm2, respectively, for U2+:CaF2, and (57±4)×10−20 and (12.5±1)×10−20 cm2 for Co2+:ZnSe. Thus, ESA is not negligible in U2+:CaF2 and Co2+:ZnSe, as previously estimated.  相似文献   

3.
The degradation of benzothiazole in aqueous solution by a photo-assisted Fenton reaction has been studied in a batch reactor in the pH range 2.0–3.2 and for H2O2 and Fe(III) concentrations respectively between 1.0×10−3–1.5×10−1 and 1.0×10−6–4.0×10−6 M.

A kinetic model has been developed to predict the decay of benzothiazole at varying reaction conditions. The use of kinetic constants from the literature in the model allows to simulate the system behavior by taking into account the influence of pH, hydrogen peroxide, Fe(III) and sulfate concentrations and the ionic strength.  相似文献   


4.
Ohmic contacts to the top p-type layers of 4H-SiC p+–n–n+ epitaxial structures having an acceptor concentration lower than 1×1019 cm−3 were fabricated by the rapid thermal anneal of multilayer Al/Ti/Pt/Ni metal composition. The rapid thermal anneal of multilayer A1/Ti/Pt/Ni metal composition led to the formation of duplex cermet composition containing Ni2Si and TiC phases. The decomposition of the SiC under the contact was found to be down to a depth of about 100 nm. The contacts exhibited a contact resistivity Rc of 9×10−5 Ω cm−2 at 21°C, decreasing to 3.1×10−5 Ω cm−2 at 186°C. It was found that thermionic emission through the barrier having a height of 0.097 eV is the predominant current transport mechanism in the fabricated contacts.  相似文献   

5.
New barrier layer, etch stop and hardmask films, including hydrogenated amorphous a-SiCx:H (SiC), a-SiCxOy:H (SiCO), and a-SiCxNy:H (SiCN) films with a dielectric constant (k) approximately 4.3, are produced using the plasma-enhanced chemical vapor deposition technique. The chemical and structural nature, and mechanical properties of these films are characterized using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and nano-indentation. The leakage current density and breakdown electric field are investigated by a mercury probe on a metal-insulator-semiconductor structure. The properties of the studied films indicate that they are potential candidates as barrier layer, etch stop and hardmask films for the advanced interconnect technology. The SiC film shows a high leakage current density (1.3×10−7 A/cm2 at 1.0 MV/cm) and low breakdown field (1.2 MV/cm at 1.0×10−6 A/cm2). Considering the mechanical and electrical properties requirements of the interconnect process, SiCN might be a good choice, but the N content may result in via poison problem. The low leakage current (1.2×10−9 A/cm2 at 1.0 MV/cm), high breakdown field (3.1 MV/cm at 1.0×10−6 A/cm2), and relative high hardness (5.7 GPa) of the SiCO film indicates a good candidate as a barrier layer, etch stop, or hardmask.  相似文献   

6.
Thin films of zinc oxide (ZnO) were prepared by dc reactive magnetron sputtering on glass substrates at various oxygen partial pressures in the range 1×10−4–6×10−3 mbar and substrate temperatures in the range 548–723 K. The variation of cathode potential of zinc target on the oxygen partial pressure was explained in terms of target poisoning effects. The stoichiometry of the films has improved with the increase in the oxygen partial pressure. The films were polycrystalline with wurtzite structure. The films formed at higher substrate temperatures were (0 0 2) oriented. The temperature dependence of Hall mobility of the films formed at various substrate temperatures indicated that the grain boundary scattering of charge carriers was predominant electrical conduction mechanism in these films. The optical band gap of the films increased with the increase of substrate temperature. The ZnO films formed under optimized oxygen partial pressure of 1×10−3 mbar and substrate temperature of 663 K exhibited low electrical resistivity of 6.9×10−2 Ω cm, high visible optical transmittance of 83%, optical band gap of 3.28 eV and a figure of merit of 78 Ω−1 cm−1.  相似文献   

7.
Green fluorescence has been obtained under continuous laser excitation in the 780–860 nm range in GdAlO3:Er3+. With the help of the Judd-Ofelt treatment we built a model based on population rate equations to describe its time evolution. We found the intensity parameters to be Ω2 = 2.045 × 10−20 cm2, Ω4 = 1.356 × 10−20 cm2 Ω6 = 1. 125 × 10−20 cm2. Even if a two-photon absorption and a looping mechanism are necessary to well describe the dynamics, the main process responsible for up-conversion is energy transfer between erbium ions.  相似文献   

8.
For the first time, thin film devices of charge transfer adducts of tetrathiafulvalene (TTF) have been fabricated. A luminance of 5 cd m−2 has been achieved for a device structure ITO/poly(aniline)/TTF(NO3)0.55/Al whose EL spectrum has a broad peak at 645 nm. The devices were fabricated by spin coating from solutions of the adducts. A luminous efficiency of 5×10−4 lm W−1 has been obtained for these devices which is comparable to that of ITO/poly(aniline)/Alq3/Al (5.2×10−4 lm W−1) under same fabrication conditions. The single layer, mixed layer and double layer devices fabricated in this study fit the space charge limited model. Devices fabricated from the adduct [TTF–Alq3] emit white light (40 cd m−2) with a luminous efficiency of 6.6×10−4 lm W−1. The colour of light emitted appears to depend on the effective oxidation state of TTF in the adducts.  相似文献   

9.
The effects of the process parameters, including deformation temperature and strain rate, on the deformation behavior and microstructure of an Al–4Cu–Mg alloy, have been investigated through isothermal compression. Experiments were conducted at deformation temperatures of 540 °C, 560 °C, and 580 °C, strain rates of 1 s−1, 1×10−1 s−1, 1×10−2 s−1, and 1×10−3 s−1, and height reductions of 20%, 40%, and 60%. The experimental results show that deformation temperature and strain rate have significant effect on the peak flow stress. The flow stress decreases with an increase of deformation temperature and/or a decrease of the strain rate. Above a critical value of the deformation temperature, the flow stress quickly reaches a steady value. Experimental materials A and B have equiaxed and irregular grains, respectively, prior to deformation. The microstructures vary with the process parameters in the semi-solid state. For material B, the irregular grains transform to equiaxed grains in the process of semi-solid deformation, which improves the deformation behavior.  相似文献   

10.
X-ray diffraction (XRD), current–voltage (IV), capacitance–voltage (CV), deep-level transient Fourier spectroscopy (DLTFS) and isothermal transient spectroscopy (ITS) techniques are used to investigate the thermal annealing behaviour of three deep levels in Ga0.986In0.014As heavily doped with Si (6.8 × 1017 cm−3) grown by molecular beam epitaxy (MBE). The thermal annealing was performed at 625 °C, 650 °C, 675 °C, 700 °C and 750 °C for 5 min. XRD study shows good structural quality of the samples and yields an In composition of 1.4%. Two main electron traps are detected by DLTFS and ITS around 280 K, with activation energies of 0.58 eV and 0.57 eV, capture cross sections of 9 × 10−15 cm2 and 8.6 × 10−14 cm2 and densities of 2.8 × 1016 cm−3 and 9.6 × 1015 cm−3, respectively. They appear overlapped and as a single peak, which divides into two smaller peaks after annealing at 625 °C for 5 min.

Annealing at higher temperatures further reduces the trap concentrations. A secondary electron trap is found at 150 K with an activation energy of 0.274 eV, a capture cross section of 8.64 × 10−15 cm2 and a density of 1.38 × 1015 cm−3. The concentration of this trap level is also decreased by thermal annealing.  相似文献   


11.
(Fe,Ti)-N films with a Ti concentration of 10 at.% were prepared on Si(100) and NaCl substrates by facing targets sputtering. The effects of the nitrogen pressure (PN) and the substrate temperature (Ts) on the formation of various (Fe,Ti)-N phases and their microstructures were investigated in detail. X-ray diffractometer and transmission electron microscope provided complete identification of the phases present in the films and the characterization of their microstructures. Films deposited at a lower PN = 1 3 × 10−2 Pa or a lower Ts = RT consist of mainly -phase. Films deposited at a higher PN = 1.3 2 × 10−1 Pa or a higher Ts = 200 °C contain a great many γ' and Fe2N phases with a higher nitrogen content. When PN = 4 7 × 10−2 Pa and Ts = 100 150 °C, it is advantageous to the formation of ′' phase. These films exhibit a high saturation magnetization (Ms) up to the range of 2.3 2.5 T, which is larger than that of pure iron.  相似文献   

12.
The third-order optical nonlinearities of surface modified PbS nanoparticles have been measured using the Z-scan technique with femtosecond laser pulses at 780 nm wavelength. The samples studied are the nanoparticles in microemulsion with the PbS concentration ranging from 0.3×10−3 to 1.9×10−3 M (mol/l). A Z-scan analysis method based on the Huygens–Fresnel (H–F) propagation integral is employed to extract the nonlinear refractive index from the experimental Z-scan data with a large nonlinear phase shift. The nonlinear refractive index of the PbS nanoparticles in microemulsion is found to increase linearly with the PbS concentration. The highest concentration microemulsion gives a nonlinear refractive index of −4.7×10−12 cm2/W, which is approximately 3 orders of magnitude higher than those of commercially available bulk semiconductors, such as ZnS and CdS. In addition, nonlinear absorption in these samples remained unmeasurable up to 0.9 GW/cm2. The mechanisms responsible for the observed large refractive nonlinearity are discussed.  相似文献   

13.
The polypyrrole composite films were prepared by the electropolymerization of pyrrole from the aqueous solution containing isopoly tungstate (poly-W) and the chloride anion (Cl) at various ratios. The film formation was traced by electrochemical quartz crystal microbalance, and the tungsten concentrations in the films were measured by the inductively coupled plasma spectroscopy. The electric conductivities of the films were measured by the four-point probe method. In the ratio of poly-W concentration to Cl concentration, ((poly-W)/Cl)), higher than 1.26 × 10−2 in the solution the concentration of tungsten in the films showed a constant value at 51 wt.% and the chloride anion was not included in the film. The conductivities of these films showed the constant value about 40 S cm−1. In the ratio lower than (poly-W)/(Cl) = 1.26 × 10−2, the conductivity decreased with the decrease of poly-W concentration and the composite films consisted of two layers; the inner layer initially formed contained larger amount of tungsten than that of the outer layer.  相似文献   

14.
Depolarization of ultra-cold neutrons (UCN) stored in material traps was first observed. The probability of UCN spin flip per reflection depends on the trap material and varies from 7×10−6 (beryllium) to 10−4 (glass).  相似文献   

15.
Lead barium niobate is a new photorefractive material of high interest for a variety of applications including holographic storage. Pb0.5Ba0.5Nb2O6 crystals have been grown by the Bridgman method, and the effects of heat treatments on their photorefractive properties were investigated using Ar ion laser at λ=514.5 nm. The color and absorption spectrum of the crystals varied depending on the oxygen partial pressure during heat treatment. The oxygen diffusivity was estimated to be in the order of 10−6 and 10−5 cm2/h at 425 and 550 °C, respectively. Reduction treatment at an oxygen pressure of 215 mTorr increased the effective density of photorefractive charges about three times from 8.0×1015 to 2.2×1016 cm−3 and made the charge transport more electron-dominant. As a result, the maximum gain coefficient improved from 5.5 to 13.8 cm−1. A diffraction efficiency as high as 70% was achieved in a reduced crystal.  相似文献   

16.
In order to get an insight into the grain boundaries (GBs) in nanocrystalline (n-) metal, we prepared the high-density n-Au with ρ/ρ0>99% by the gas-deposition method and carried out the vibrating reed measurements, where ρ/ρ0 is the relative density referring to the bulk density. The strain amplitude dependence (SAMD) of the resonant frequency (f) and the internal friction (Q−1) was measured for the strain () amplitude between 10−6 and 2×10−3 and for temperature between 5 and 300 K. No plastic deformations are detected for the present strain range, where f decreases for up to 10−4 and then turns to increase, showing saturation for between 10−4 and 2×10−3. The low temperature irradiation by 2 MeV electrons or 20 MeV protons causes an increase in the Young’s modulus at 6 K, which is surmised to reflect a modification of the anelastic process in the GB regions. In contrast, the SAMD of f is hardly modified by irradiation, suggesting that it is indicative of a collective motion of atoms in n-Au.  相似文献   

17.
Parylene-n (Poly-p-xylylene) (PA-n) [1–3] has a long history of use as a moisture barrier for printed circuit boards and hybrids. This paper evaluates this compound as a candidate vapor-depositable polymer interlayer dielectric for submicron integrated circuit technology due to its low dielectric constant, good step coverage, and high etch selectivity. To apply PA-n on high-density very large scale integrated circuits, its properties, such as deposition rate, deposition yield, and Crystallinity, are investigated as a function of deposition pressure and annealing temperature. The deposition rate was found in the range of 2.66 Pa to 13.3 Pa to be a linearly increasing function of pressure. Good-quality films were obtained when pressure was controlled below 10.64 Pa. Cloudy films, however, were found at 13.3 Pa. The deposition rate could be as high as 3.33 × 10−10 m s−1 when deposited at 10.64 Pa. The plot of PA-n yield vs. pressure showed a constant plateau of 1 × 10−4 m kg−1 from 2.66 Pa to 10.64 Pa. The optimum deposition rate was hence obtained at 10.64 Pa without compromising the deposition yield. The crystallinity-associated properties examined were hardness, dielectric constant, and water permeability. A lower deposition pressure was observed to produce higher Crystallinity that could be further enhanced by thermal annealing. A 5 × 10−8 m hard surface layer was detected with hardness 3.5 GPa, that was 3˜7 times larger than that of bulk hardness which was 0.4˜0.7 GPa. The bulk hardness was found to increase as Crystallinity increased. The dielectric constant tended to increase when the deposition pressure decreased. Furthermore, the dielectric constant was nearly constant when the polymer was heated up to temperatures as high as 698 K. This behavior, together with the formation of the hard layer and a higher Crystallinity, was believed to result from the improved film organization of the deposited films. The competition between the film build-up in the surface region and the monomer diffusion into the bulk region (penetration) was theorized to be responsible for the film organization. The water permeability, which was measured to be as low as 1.2 × 10−15 kg m−1 s−1 Pa−1 and was found to increase as the deposition pressure was increased, further strengthened the film organization claim.  相似文献   

18.
Barium tungstate (BaWO4) single crystal has been grown using Czochralski technique. It belongs to the scheelite structure, forming the space group I41/a at room temperature and the primitive cell contains two formular units. The thermal expansion, specific heat and thermal diffusivity were measured, and then the thermal conductivity was calculated. These results show that BaWO4 possesses large anisotropic thermal expansion and its thermal expansion coefficients are a = 1.10 × 10−5/K, b = 1.08 × 10−5/K, and c = 3.51 × 10−5/K in the temperature range from 303 to 1423 K. However, its thermal conductivity shows small anisotropic in the temperature range from 297 to 563 K and even displays isotropic at about 428 K. The calculated thermal conductivities are 2.59 and 2.73 W m−1 K−1 at room temperature, along [1 0 0] and [0 0 1] directions, respectively.  相似文献   

19.
Single-crystal ZnWO4:Dy3+ was grown by Czochralski technique. The XRD, absorption spectra as well as fluorescence spectrum are investigated and the Judd–Ofelt intensity parameters Ω2, Ω4, Ω6 are obtained to be 7.76 × 10−20 cm2, 0.57 × 10−20 cm2, 0.31 × 10−20 cm2, respectively. Calculated radiative transition rate, branching ratios and radiative lifetime for different transition levels of ZnWO4:Dy3+ crystals are presented. Fluorescence lifetime of 4F9/2 level is 158 μs and quantum efficiency is 66%.The most intense fluorescence line at 575 nm correlative with transition 4F9/2 → 6H13/2 is potentially for application of yellow lasers.  相似文献   

20.
Enhanced fluoride sorption by mechanochemically activated kaolinites   总被引:1,自引:0,他引:1  
This study investigated the surface modification of photocatalyst and photodecomposition of formaldehyde from indoor pollution source. This study explored the feasibility of the application of the ultraviolet light emitting diode (UVLED) instead of the traditional ultraviolet (UV) lamp to treat the formaldehyde. The photocatalytic decomposition of formaldehyde at various initial concentrations was elucidated according to the Langmuir–Hinshelwood model. The reaction rate constant (k) and adsorption equilibrium constant (KL) over 0.334 g silver titanium oxide photocatalyst (Ag/TiO2) coated on glass sticks with 254 nm ultraviolet lamp (UVC), 365 nm ultraviolet lamp (UVA), and UVLED are 650 ppmv min−1 and 2 × 10−4 ppmv−1, 500 ppmv min−1 and 1.04 × 10−4 ppmv−1, and 600 ppmv min−1 and 2.52 × 10−5 ppmv−1, respectively. A comparison of the simulation results with the experimental data was also made, indicating good agreement. The magnitudes of energy effectiveness (Ee) are in the order of UVLED (0.6942 mg kW−1 h−1) > UVA (0.007 mg kW−1 h−1) > UVC (0.0053 mg kW−1 h−1). The Ee of UVLED is 131 times larger than that of UVC. The UVLED can save a lot of energy in comparison with the traditional UV lamps. Thus, this study showed the feasible and potential use of UVLED in photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号