共查询到20条相似文献,搜索用时 15 毫秒
1.
采用共沉淀-喷雾干燥法制备了锂离子电池球形Li Ni0.8Co0.15Al0.05O2正极材料,通过热重分析法(TG)、X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明材料具有良好的层状结构,球形颗粒粒径约10μm;在30℃下,2.5~4.3 V循环,以20 m A/g放电,首次比容量达186.3 m Ah/g,循环50次后容量保持率为84.1%。 相似文献
2.
选用LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)/石墨体系,LiPF_6浓度分别为1.25 mol/L和1.30 mol/L的电解液,研制额定容量为4.5 Ah的功率型软包装锂离子电池。使用Li PF6浓度为1.25 mol/L、添加二氟苯酸硼酸锂电解液的电池,功率性能及循环性能较好,250 A(约55 C)放电容量为3.998 Ah,可达到5 A放电容量的85%,平均比功率为4 328 W/kg,500 A脉冲放电2 s实验的瞬时比功率达到8 700 W/kg。 相似文献
3.
用溶胶-凝胶法在前驱体表面包覆AlOOH,与LiOH·H2O烧结成Al2O3包覆LiNi0.8Co0.1Mn0.1O2,对产物进行XRD、SEM及电化学性能分析。AlOOH均匀地包覆在前驱体表面,烧结产物为典型的α-NaFeO2层状结构。Al2O3包覆可降低LiNi0.8Co0.1Mn0.1O2的表面活性,减少与电解液的副反应,提高稳定性并改善高电压、高温循环及高温贮存性能。包覆产物以0.2 C(35 mA/g)在2.7~4.5 V(25℃)、2.7~4.2 V(55℃)循环,首次放电比容量分别为203.2 mAh/g、182.0 mAh/g,第50次循环的容量保持率分别为88.10%、89.07%;高温贮存240 h后的容量保持率和恢复率分别为91.83%和97.74%。 相似文献
4.
通过改进前驱体共沉淀工艺,促使Ni~(2+)、Co~(2+)和Al~(3+)的反应历程都包括络合和沉淀两种平衡,得到均质前驱体Ni_(0.8)Co_(0.15)Al_(0.05)(OH)_(2.05);通过在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2表面包覆质量分数1%Li_3PO_4,材料的循环性能得到较大改善,尤其是60℃下的高温循环性能,1 C循环50次后依然有88.4%的容量保持率;同时材料的倍率性能也得到较大改善,5 C/1 C85%;制备与改性方法适合商业化生产。 相似文献
5.
通过固相法制备了掺杂Pr的锂离子电池正极材料Li[Ni0.5Co0.2Mn0.3](1-x)PrxO2(x=0、0.01、0.02、0.03和0.05)。用XRD、SEM、充放电测试、循环伏安测试等研究Pr掺杂对材料结构及电化学性能的影响。适量的掺杂不会改变材料的晶体类型,还能减轻阳离子混排,稳定层状结构。在0.1 C(20 m A/g)下,x=0.02样品的首次放电比容量为186.9 m Ah/g,在5.0 C下循环100次后,容量保持率高达94.9%。 相似文献
6.
采用球形Ni0.5Co0.2Mn0.3(OH)2前驱体与Li2CO3混合,通过高温烧结合成层状Li Ni0.5Co0.2Mn0.3O2正极材料,研究了合成时间对材料结构及电化学性能的影响。扫描电子显微镜法(SEM)表明Li Ni0.5Co0.2Mn0.3O2正极材料与前驱体形貌均为理想的球形。X射线衍射光谱法(XRD)分析表明,在不同合成时间下合成的样品均为具有层状结构的纯相物质。电化学性能测试表明,900℃12 h合成的样品具有最优的电化学性能,在2.7~4.4 V电压区间,0.1 C、1 C、5 C的首次放电比容量分别达到195.2、158.4和114.9 m Ah/g,1 C循环10次容量保持率为98.9%。 相似文献
7.
同时采用水杨酸钠和氨水作为络合剂,通过共沉淀控制结晶法合成了Ni_(0.80)Co_(0.15)Al_(0.05)(OH)_2前驱体,然后在750℃下烧结,制备出锂离子电池正极材料LiNi_(0.80)Co_(0.15)Al_(0.05)O_2。通过对混合硫酸盐溶液及Ni-Co-Al-C_7H_5O_3Na-NH_3-H_2O平衡体系作热力学计算分析,结果表明:在混合盐溶液中,Al~(3+)几乎完全被水杨酸根离子络合,在混合盐溶液泵入底液后,又能缓慢释放出Al~(3+)参与共沉淀反应;在共沉淀反应的最佳范围pH=10~11.5,最佳氨水浓度c(NH3)=0.1~0.3 mol/L范围内获得球形Ni_(0.80)Co_(0.15)Al_(0.05)(OH)_2前驱体,以该前躯体合成LiNi_(0.80)Co_(0.15)Al_(0.05)O_2正极材料,0.2 C首次放电比容量达175.1 mAh/g,70次循环后容量保持率为86.7%,具有优异的循环性能。 相似文献
8.
采用高温固相法制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,并用三氧化二铝(Al_2O_3)进行表面包覆改性。通过XRD、SEM对材料晶体结构、形貌进行分析,用恒流充放电和循环伏安等对材料进行测试。Al_2O_3包覆的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料具有典型的空间群,为R-3m的六方层状α-Na Fe O2结构。以0.2 C在2.5~4.3 V循环,Al_2O_3包覆量为1%的材料电化学性能最好,首次放电比容量可达145.7 m Ah/g,第30次循环的容量保持率为94.0%,比未包覆Al_2O_3材料在相同条件下的放电比容量提高了6.3%。 相似文献
10.
锂离子电池三元正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2具有可逆比容量高、成本低等优点,应用前景广阔。阐述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的晶体结构特征及作为锂离子电池正极材料使用时的优、缺点;综述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2的制备方法及离子掺杂、表面包覆等对其电化学性能的影响;评述了LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2当前面临的主要问题及解决途径。 相似文献
11.
高镍LiNi_(0.8)Co_(0.15)Al_(0.05)O_2因其具有理论比容量高、稳定性好,对环境友好等优势而成为一种非常有前景的三元正极材料。但较高的镍含量更容易造成阳离子混排、相变导致热稳定性降低、材料表面具有高的反应活性和容易在材料表面产生微裂纹,致使材料稳定性和循环性能随之降低,严重制约了其商业化应用,因而需要采取一定措施提高其稳定性。氧化物对其进行表面包覆改性可显著改善正极材料的电化学性能,减轻与电解液的副反应并提高充放电状态下的热稳定性。本文综述了氧化物对三元材料改性方面的最新研究进展,并对其应用前景进行了展望。 相似文献
12.
13.
采用化学共沉淀法预先合成球形前驱体Ni0.5Co0.2Mn0.3(OH)2,再与锂源共混后高温煅烧合成高容量正极材料Li Ni0.5Co0.3Mn0.2O2。探讨了不同烧结制度对材料结构性能的影响。X射线衍射(XRD)结果表明,产物结构为α-Na Fe O2型层状结构。扫描电子显微镜(SEM)显示材料具有良好的球形形貌。测试材料的电化学性能,在2.75~4.20 V和2.75~4.35 V充放电截止电压,0.5 C充放电电流下,首次放电比容量分别为162.2和172.6 m Ah/g,循环3周后容量保持率分别为96.73%和94.62%。材料还表现出良好的倍率性能。 相似文献
14.
用共沉淀法制备前驱体Ni0.5Co0.2Mn0.3(OH)2,焙烧前驱体与Li2CO3制备Li Ni0.5Co0.2Mn0.3O2。用XRD、SEM和DSCTGA分析焙烧中间产物的结构、形貌及变化,探索制备Li Ni0.5Co0.2Mn0.3O2的机理。随着焙烧温度的升高,前驱体分解成(Ni0.5Co0.2Mn0.3)3O4,随后Li2CO3参与反应,形成Li Ni0.5Co0.2Mn0.3O2。Li Ni0.5Co0.2Mn0.3O2的生成在650℃时结束,但层状结构在900℃时才趋于完美。 相似文献
15.
16.
采用共沉淀法制备Ni0.8 Co0.15 Al0.05(OH)2三元前驱体,与LiOH·H2 O球磨混合后,通过高温固相法烧结制备LiNi0.8 Co0.15Al0.05O2(NCA)正极材料,探究LiTiO2包覆量(0、0.2%、0.5%、1.0%)对LiTiO2包覆的Li(Ni0.8Co0.15Al0.05)1-xO2正极材料性能的影响.通过XRD、SEM、透射电子显微镜(TEM)、电化学阻抗谱(EIS)及充放电测试等,分析材料的结构、形貌及电化学性能.LiTiO2包覆在NCA材料表面,当包覆量为0.5%时,电化学性能最佳.在2.8~4.2 V充放电,1.0 C倍率的首次放电比容量达182.3 mAh/g,循环200次的容量保持率为76.4%;10.0 C倍率的放电比容量为141.3 mAh/g. 相似文献
17.
采用共沉淀法合成了球形Ni0.13Co0.13Mn0.54(OH)1.6前驱体,与锂结合生成Li1.2Ni0.13Co0.13Mn0.54O2正极材料。采用X射线衍射(XRD)、电子扫描电镜(SEM)、循环伏安测试(CV)、交流阻抗测试(EIS)和充放电测试对Li1.2Ni0.13Co0.13Mn0.54O2正极材料进行了表征。结果表明,所合成的材料具有球形形貌,粒度分布均匀,振实密度达2.1 g/cm3,材料0.2 C首次放电比容量280.9 mAh/g,1 C首次放电比容量237.1 mAh/g,循环50次后1 C容量保持率92.5%,表现出优异的电化学性能。 相似文献
18.
层状结构的LiNi1/3Co1/3Mn1/3O2材料具有性能优异,环境污染小,毒性低以及高温稳定性好等优点,但其结构中阳离子混排现象以及结构的稳定性严重制约了其循环性能,其中一种很有效的方法就是在LiNi1/3Co1/3Mn1/3O2的晶格中掺杂各种离子,促进Li+扩散以及提高该材料的循环性能。综述了Mg、Al、Cr、F等阴阳离子掺杂以及阴阳离子复合掺杂对于LiNi1/3Co1/3Mn1/3O2材料在结构、形貌、放电性能等方面的影响,重点突出了元素掺杂手段对LiNi1/3Co1/3Mn1/3O2结构中Ni2+/Li+阳离子混排、结构稳定性、充放电效率以及循环性能方面的改善,并对此类掺杂改性手段进行总结及展望。 相似文献
19.
20.
采用固相法合成了具有层状结构的LiNi0.75Co0.15Mn0.1O2晶体.采用XRD结构精修对合成样品的结构进行了研究.研究发现,在LiNi0.75Co0.15Mn0.1O2中,锂氧八面体发生扭曲;LiNi0.75Co0.15Mn0.1O2锂氧八面体中12条棱边长度不相同,氧八面体不同长度12条棱边长度分为两组,每组棱边数均为6条,其中一组长度2.878 0 A,另一组长度3.086 9 A;分析认为Li与过渡元素的作用是造成锂氧八面体中12条棱边长度不相同的原因. 相似文献