首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
通用单胞模型常被应用于复合材料细观力学分析。但原始的通用单胞模型存在求解量大、计算效率低的问题。本文中对其改进, 建立了以子胞界面细观应力为未知量的细化单胞模型。该模型可以充分考虑纤维、基体和界面相等细观组分, 并实现单向板的宏-细观多尺度力学分析。通过将组分材料失效判据引入到模型中, 再与经典层合理论相结合, 提出了一种基于细化单胞模型的复合材料层合板强度预报方法, 并给出了基于试验数据的强度谱定量评测方法。通过与世界失效分析习题的失效理论和试验数据进行对比, 证明本文的预报方法具有很高的计算精度和广泛的普适性。  相似文献   

2.
复合材料及其结构塑性极限载荷的上限分析   总被引:1,自引:1,他引:0       下载免费PDF全文
从细观和宏观两个角度研究复合材料及其结构的塑性极限承载问题。在细观角度上,从基于材料细观结构代表性胞元出发,根据塑性极限分析中的上限理论,借助于均匀化理论和有限元方法,建立复合材料强度参数计算的有限元数学规划格式。在此基础上,模拟复合材料的屈服面,进而拟合出复合材料的屈服准则。在宏观角度上,针对由复合材料构成的结构,根据数值模拟得到的屈服准则,利用上限分析方法计算得到复合材料结构的极限载荷。  相似文献   

3.
在高体积含量颗粒增强复合材料细观弹性分析的基础上, 引入了细观塑性和细观损伤模型: 基体用服从Von Mises 屈服准则的理想弹塑性材料模拟, 用沿圆柱形基体轴线方向的平均应力(即对称面上的应力) 来判断基体的屈服, 并将基体的塑性部分简化为圆柱状轴对称区域。建立了基体和颗粒/ 基体界面统一的损伤准则, 该准则同时考虑了最大应变和三轴应力的影响, 通过对细观塑性和细观损伤在空间取向上的平均, 建立了材料宏观模量的折减法则。用该细观力学模型, 数值模拟了一种实际金属基复合材料的强度实验, 理论模型与实验结果吻合。   相似文献   

4.
通用单胞模型常被应用在复合材料细观力学分析上。但原始的通用单胞模型存在求解量大、计算效率低的问题。该文对其改进,建立了以子胞界面细观应力为未知量的细化单胞模型。利用该模型研究复杂的微观结构包括纤维截面形状/排列方式,界面相材料属性/几何厚度,夹杂/空隙对单向纤维复合材料宏观弹性常数的影响。通过与其他研究方法和试验数据对比证实了该预测模型具有更高的计算效率,计算精度和更广泛的普适性。该文模型子胞划分更细致,克服了原始通用单胞模型无法分析复杂微观结构的不足。有望将损伤力学引入该模型中建立一个有力的分析工具,来进行复合材料结构宏/细观多尺度损伤力学分析。  相似文献   

5.
为准确预测非均质复合材料的有效热导率和局部温度场分布,采用单胞变分渐近均匀化方法构建了一种新的细观力学模型。首先从非均质连续体热传导变分问题入手,使用变分渐近法将其细观力学模型转换为约束条件下泛函的最小化——取驻值问题;使用有限元法(FEM)推导了离散形式能量泛函的最小化求解过程;根据宏观性能(如全局温度及相应的梯度和波动函数)重构单胞的局部温度场和热通量。采用多个二元复合材料算例验证了所构建理论和程序的有效性和准确性。  相似文献   

6.
针对三维多向编织复合材料, 在已建立的单胞几何模型及材料力学性能细观计算力学分析方法的基础上,引入M urakam i 的几何损伤理论模拟纤维束的细观损伤行为, 建立了预报该类材料非线性本构行为数值模拟及细观损伤机理的有限元分析方法。结合实例预报了碳/环氧四向编织复合材料本构的非线性行为, 并与实验结果进行了对比。   相似文献   

7.
基于变分渐近均匀化理论框架建立可预测复合材料有效湿热弹性性能和单胞内局部场分布的细观力学模型。从推导复合材料湿热弹性自由能泛函出发,利用细、宏观尺度比作为小参数对自由能泛函的主导变分项进行渐近分析,得到湿热弹性问题的系列细观力学模型和局部场分布的重构关系,并通过有限元数值方法实现。与ABAQUS有限元算例的对比表明:构建的细观力学模型可有效准确地预测复合材料有效湿热弹性属性和局部场分布。   相似文献   

8.
针对连续石墨纤维增强铝基(CF/Al)复合材料,采用三种纤维排布方式的代表体积单元(RVE)建立了其细观力学有限元模型,采用准静态拉伸试验与数值模拟结合的方法,研究了其在轴向拉伸载荷下的渐进损伤与断裂力学行为。结果表明,采用基体合金和纤维原位力学性能建立的细观力学有限元模型,对轴向拉伸弹性模量和极限强度的计算结果与实验结果吻合良好,而断裂应变计算值较实验结果偏低。轴向拉伸变形中首先出现界面和基体合金损伤现象,随应变增加界面发生失效并诱发基体合金的局部失效,最后复合材料因纤维发生失效而破坏,从而出现界面脱粘后纤维拔出与基体合金撕裂共存的微观形貌。细观力学有限元分析结果表明,在复合材料制备后纤维性能衰减而强度较低条件下,改变界面强度和刚度对复合材料轴向拉伸弹塑性力学行为的影响较小,复合材料中纤维强度水平是决定该复合材料轴向拉伸力学性能的主要因素。  相似文献   

9.
残余应力对复合材料弹2塑性变形的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
从细观力学的角度给出了分析残余应力对一般复合材料塑性性能影响的一种解析方法, 该方法基于应力二阶矩的割线模量法及Ponte Castaneda 和W illis 给出的弹性细观模型。有残余应力时, 所提的细观解析模型能够同时考虑纤维形状, 体积百分比, 纤维取向及纤维的分布对复合材料变形的影响。计算结果表明, 残余应力的存在会引起复合材料拉压变形的不对称, 材料宏观的拉压硬化曲线又与复合材料的细观结构参数密切相关。对单向复合材料, 本文作者对其等效割线热膨胀系数, 拉压应力-应变曲线的有限元分析结果与给出的细观解析模型定量吻合。   相似文献   

10.
基于单胞解析模型,建立一种从复合材料细观组分到宏观单向板的强度预报方法。根据连续介质力学和均匀化方法构建细-宏观关联矩阵,通过该关联矩阵将细观组分材料的弹性和损伤性能传递到宏观单向板中。考虑复合材料细观损伤状态,当纤维和基体满足各自强度准则时失效,并通过失效因子折算成刚度的衰减。在此基础上,结合有限元分析,实现复合材料单向板纵横向拉伸模拟,从而预报单向板的拉伸强度。结果表明:该方法预报的模量和强度与实验值基本一致,验证了该方法的有效性与高效性。  相似文献   

11.
A nonlinear mathematical programming approach together with the finite element method and homogenization technique is developed to implement kinematic limit analysis for a microstructure and the macroscopic strength of a composite with anisotropic constituents can be directly calculated. By means of the homogenization theory, the classical kinematic theorem of limit analysis is generalized to incorporate the microstructure - Representative Volume Element (RVE) chosen from a periodic composite/heterogeneous material. Then, using an associated plastic flow rule, a general yield function is directly introduced into limit analysis and a purely-kinematic formulation is obtained. Based on the mathematical programming technique, the finite element model of microstructure is finally formulated as a nonlinear programming problem subject to only one equality constraint, which is solved by a direct iterative algorithm. The calculation is entirely based on a purely-kinematical velocity field without calculation of stress fields. Meanwhile, only one equality constraint is introduced into the nonlinear programming problem. So the computational cost is very modest. Both anisotropy and pressure-dependence of material yielding behavior are considered in the general form of kinematic limit analysis. The developed method provides a direct approach for determining the macroscopic strength domain of anisotropic composites and can serve as a powerful tool for microstructure design of composites.  相似文献   

12.
A microscopic approach together with nonlinear programming technique and finite element method is developed for shakedown analysis of a composite which has cohesive–frictional constituents. The macroscopic shakedown limit of a composite subject to cyclic loading is calculated in a direct way and the macro–micro relation is quantitatively evaluated. First, by means of the homogenization theory, the classical kinematic theorem of shakedown analysis is generalized to incorporate the microstructure – Representative Volume Element (RVE) chosen from a periodic heterogeneous material. Pressure-dependence and non-associated plastic flow of cohesive–frictional constituent materials are formulated into shakedown analysis. Based on the mathematical programming technique and the finite element method, the numerical micro-shakedown model is finally formulated as a nonlinear programming problem subject to only a few equality constraints, which is solved by a generalized Lagrangian-penalty iterative algorithm. The proposed approach provides a direct approach for determining the reduced macroscopic strength domain of heterogeneous or composite materials due to cyclic loading. Meanwhile, it can capture different plastic behaviors of materials and therefore the developed method has a wide applicability.  相似文献   

13.
The macroscopic strength domain and failure mode of heterogeneous or composite materials can be quantitatively determined by solving an auxiliary limit analysis problem formulated on a periodic representative volume element. In this paper, a novel numerical procedure based on kinematic theorem and homogenization theory for limit analysis of periodic composites is developed. The total velocity fields, instead of fluctuating (periodic) velocity, at microscopic level are approximated by finite elements, ensuring that the resulting optimization problem is similar to the limit analysis problem formulated for structures, except for additional constraints, which are periodic boundary conditions and averaging relations. The optimization problem is then formulated in the form of a standard second‐order cone programming problem to be solved by highly efficient solvers. Effects of loading condition, representative volume element architecture, and fiber/air void volume fraction on the macroscopic strength of perforated and fiber reinforced composites are studied in numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
Using a Representative volume element (RVE) to represent the microstructure of periodic composite materials, this paper develops a non‐linear numerical technique to calculate the macroscopic shakedown domains of composites subjected to cyclic loads. The shakedown analysis is performed using homogenization theory and the displacement‐based finite element method. With the aid of homogenization theory, the classical kinematic shakedown theorem is generalized to incorporate the microstructure of composites. Using an associated flow rule, the plastic dissipation power for an ellipsoid yield criterion is expressed in terms of the kinematically admissible velocity. By means of non‐linear mathematical programming techniques, a finite element formulation of kinematic shakedown analysis is then developed leading to a non‐linear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the plastic dissipation power which is to be minimized and an upper bound to the shakedown load of a composite is then obtained. An effective, direct iterative algorithm is proposed to solve the non‐linear programming problem. The effectiveness and efficiency of the proposed numerical method have been validated by several numerical examples. This can serve as a useful numerical tool for developing engineering design methods involving composite materials. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Summary This paper examines theoretically the stress distribution around fiber breaks in a unidirectional reinforced metal matrix composite, subjected to axial loading when plastic yielding of the matrix is allowed to occur. The composites considered have a ductile interphase, bonding the matrix to the fiber. The likelihood of failure of a fiber adjacent to the existing broken fiber is considered. Detailed and systematic results are given for composites with a wide range of fiber volume fractions, Young's modulus of the fibers and the matrix, interphase properties and Weibull modulus for the strength of the fibers. The objective is the optimization of these material and geometric variables to ensure global load sharing among the fibers in the longitudinal direction, which will give the composite good longitudinal strength. Calculations are carried out for transverse loading of the composite to determine the effect of the ductile interphase on the yield strength. Characteristics of the ductile interphase are determined that will provide good longitudinal strength through global load sharing and a relatively high yield strength in the direction transverse to the fibers. This, in turn, will allow control of the strength anisotropy of uniaxially reinforced metal matrix composites.  相似文献   

16.
提出一种在塑性铰区域采用高延性纤维增强水泥基复合材料(ECC)替代混凝土来改善FRP筋-钢筋增强混凝土柱抗震性能的新方法。对FRP筋-钢筋增强ECC-混凝土构件进行了低周往复荷载试验,系统地考察了基体材料、筋材种类、轴压比对构件破坏模态、裂缝模式、承载力、残余变形、延性和耗能能力的影响。结果表明,将ECC替代塑性铰区域混凝土能够有效避免FRP筋的受压屈曲,进而显著提升组合柱的抗震性能。与钢筋增强ECC-混凝土组合柱相比,复合筋增强ECC-混凝土组合柱的残余变形明显更小,且屈服后的刚度更高。随着轴压比的增大,构件极限强度升高但变形能力降低。通过有限元参数分析可知,组合柱的承载力和变形能力均随着ECC抗压强度及总配筋率的增大而增大;在总配筋率不变的情况下,FRP筋占比越高,构件的延性越好。  相似文献   

17.
This study examined the feasibility of using polybutene-1 (PB-1), a ductile plastic, as a matrix for manufacturing wood plastic composites (WPCs) with improved toughness and ductility compared to currently commercialized WPCs. The processability, tensile, flexural, and impact properties of injection molded PB-1/wood-flour composite samples with varying proportions of wood flour were characterized. Analysis also included the morphology of fractured samples surface and adhesion between the polymer and wood flour using SEM. Comparisons of the mechanical properties and adhesion in the PB-1 composites to those of HDPE and PP-based WPCs found the composites made with PB-1 matrix significantly inferior in strength and stiffness (both in tensile and flexural) than their counterparts made of HDPE and PP matrices. In contrast, the processability, elongation at break, impact strength and adhesion in PB-1/wood-flour composites, superior to those of HDPE and PP, confirmed their suitability for use as a matrix in composites intended for applications subjected to high impacts.  相似文献   

18.
Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.  相似文献   

19.
A near-tip plane strain finite element analysis of a crack terminating at and normal to the interface in a laminate consisting of alternate brittle and ductile layers is conducted under mode-I loading. The studies are carried out for a system representing steel/alumina composite laminate. The Gurson constitutive model, which accounts for the ductile failure mechanisms of microvoid nucleation, growth and coalescence, is employed within the framework of small deformation plasticity theory. Evolution of plastic zone and damage in the ductile layer is monitored with increasing load. High plastic strain localization and microvoid damage accumulation are found to occur along the brittle/ductile interface at the crack-tip. Fracture initiation in the ductile phase is predicted and the conditions for crack renucleation in the brittle layer ahead of the crack are established for the system under consideration. Ductile fracture initiation has been found to occur before plasticity spreads in multiple ductile layers. Effects of material mismatch and yield strength on the plastic zone evolution are briefly discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号