首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, heat transfer and pressure drop characteristics of copper–water nanofluid flow through isothermally heated corrugated channel are numerically studied. A numerical simulation is carried out by solving the governing continuity, momentum and energy equations for laminar flow in curvilinear coordinates using the Finite Difference (FD) approach. The investigation covers Reynolds number and nanoparticle volume fraction in the ranges of 100–1000 and 0–0.05 respectively. The effects of using the nanofluid on the heat transfer and pressure drop inside the channel are investigated. It is found that the heat transfer enhancement increases with increase in the volume fraction of the nanoparticle and Reynolds number, while there is slight increase in pressure drop. Comparisons of the present results with those available in literature are presented and discussed.  相似文献   

2.
Thermal management issues are limiting barriers to high density electronics packaging and miniaturization. Liquid cooling using micro and mini channels is an attractive alternative to large and bulky aluminum or copper heat sinks. These channels can be integrated directly into a chip or a heat spreader, and cooling can be further enhanced using nanofluids (liquid solutions with dispersed nanometer-sized particles) due to their enhanced heat transfer effects reported in literature. The goals of this study are to evaluate heat transfer improvement of a nanofluid heat sink with developing laminar flow forced convection, taking into account the pumping power penalty. The phrase heat transfer enhancement ratio (HTR) is used to denote the ratio of average heat transfer coefficient of nanofluid to water at the same pumping power. The proposed model uses semi-empirical correlations to calculate nanofluid thermophysical properties. The predictions of the model are found to be in good agreement with experimental studies. The validated model is used to identify important design variables (Reynolds number, volume fraction and particle size) related to thermal and flow characteristics of the microchannel heat sink with nanofluids. Statistical analysis of the model showed that the volume fraction is the most significant factor impacting the HTR, followed by the particle diameter. The impact of the Reynolds number and other interaction terms is relatively weak. The HTR is maximized at smallest possible particle diameter (since smaller particles improve heat transfer but do not impact pumping power). Then, for a given Reynolds number, an optimal value of volume fraction can be obtained to maximize HTR. The overall aim is to present results that would be useful for understanding and optimal design of microchannel heat sinks with nanofluid flow.  相似文献   

3.
The momentum and forced convection heat transfer for a laminar and steady free stream flow of nanofluids past an isolated square cylinder have been studied numerically. Different nanofluids consisting of Al2O3 and CuO with base fluids of water and a 60:40 (by mass) ethylene glycol and water mixture were selected to evaluate their superiority over conventional fluids. Recent correlations for the thermal conductivity and viscosity of nanofluids, which are functions of particle volumetric concentration as well as temperature, have been employed in this paper. The simulations have been conducted for Pe = 25, 50, 100 and 200, with nanoparticle diameters of 30 and 100 nm and particle volumetric concentrations ranging from 0% to 4%. The results of heat transfer characteristics of nanofluid flow over a square cylinder showed marked improvement comparing with the base fluids. This improvement is more evident in flows with higher Peclet numbers and higher particle volume concentration, while the particle diameter imposes an adverse effect on the heat transfer characteristics. In addition, it was shown that for any given particle diameter there is an optimum value of particle concentration that results in the highest heat transfer coefficient.  相似文献   

4.
The primary heat transfer parameters such as coefficient of heat transfer and pressure drop observed during condensation of binary azeotropic refrigerant mixtures R-410a (R125/R32: 50/50), and R-507 (R125/R143a: 50/50) are presented in this paper.Experiments showed that for Reynolds numbers higher than 4.2 E06, R-410a appears to have greater heat transfer rates more than the other blends under investigation. Furthermore, it is quite evident from this data that R-507 has the highest pressure drop among the refrigerants under investigation.  相似文献   

5.
In this article, laminar forced convection heat transfer of copper–water nanofluid in trapezoidal-corrugated channel has been numerically investigated. The two-dimensional governing continuity, momentum and energy equations in body-fitted coordinates are discretized using finite volume approach and solved iteratively using SIMPLE technique. In this study, the Reynolds number and nanoparticle volume fractions are in the ranges of 100–700 and 0–5%, respectively. The effect of geometrical parameters such as the amplitude and wavelength of the corrugated channel, nanoparticle volume fraction and Reynolds number on the velocity vectors, temperature contours, pressure drop and average Nusselt number have been presented and analyzed. The results show that the average Nusselt number enhances with increase in nanoparticles volume fraction and with the amplitude of corrugated channel but this enhancement accompanied by increases in pressure drop. In addition, as the wavelength of corrugated channel decreases, the average Nusselt number increases and the pressure drop decreases.  相似文献   

6.
The laminar convective heat transfer behavior of nanofluids through a straight tube is numerically investigated in this paper. A new mechanism which is proposed to explain considerable enhancement of nanofluids heat transfer is dispersion that intends to consider the irregular movements of the nanoparticles. Applying this additional mechanism leads to promising results in comparison with the predictions by traditional homogenous model with effective properties. To validate the dispersion model results, the experimental results for three kinds of nanofluids are used. Also the effect of nanoparticle size on nanofluid heat transfer is examined. The obtained results show good agreement between the theoretical and experimental results.  相似文献   

7.
《节能》2021,(1)
模拟纳米流体在三维管道中的流动和强化传热过程,运用数值计算方法研究纳米流体的流动特性和传热机理,探究不同纳米颗粒体积分数和不同纳米颗粒大小在不同雷诺数(Re)下对纳米流体的流动和传热特性的影响。基于DPM模型对纳米流体在圆管中的对流换热进行了数值模拟研究,研究结果表明,在一定范围内,每增加0.5%的体积分数,纳米流体的传热性能平均增强7.82%。随着纳米颗粒的减小,纳米流体的传热系数不断增加。  相似文献   

8.
The Buongiorno model Maxwell nanofluid flow, heat and mass transfer characteristics over a stretching sheet with a magnetic field, thermal radiation, and chemical reaction is numerically investigated in this analysis. This model incorporates the effects of Brownian motion and thermophoresis. The governing partial differential equations are transformed into a coupled nonlinear ordinary differential equation by using the similarity transformation technique. The resultant nonlinear differential equations are solved by using the Finite element method. The sketches of velocity, temperature and concentration with diverse values of magnetic field parameter (0.1 ≤ M ≤ 1.5), Deborah number (0.0 ≤ β ≤ 0.19), radiation parameter (0.1 ≤ R ≤ 0.7), Prandtl number (0.5 ≤ Pr ≤ 0.8), Brownian motion parameter (0.1 ≤ Nb ≤ 0.7), thermophoretic parameter (0.2 ≤ Nt ≤ 0.8), Chemical reaction parameter (1.0 ≤ Cr ≤ 2.5) and Lewis number (1.5 ≤ Le ≤ 3.0) have investigated and are depicted through plots. Moreover, the values of the Skin-friction coefficient, Nusselt number, and Sherwood numbers are also computed and are shown in tables. The sequels of this analysis reviewed that the values of Skin-friction coefficient and Sherwood number intensified with hiked values of Deborah number (β), whereas, the values of Nusselt number decelerate as values of (β) improves.  相似文献   

9.
为研究平行流热管的工作机理,本文基于Fluent软件中的VOF模型编写了蒸发冷凝相变的UDF程序,对不同功率下平行流热管管内两相流动和传热过程进行了数值模拟研究。模拟结果显示了初始阶段平行流热管管内的气液分布,启动阶段管内包括泡状流、弹状流、环状流等复杂流型的转变过程,稳定工作阶段工质在各并联管路中互激振荡流动。在高加热功率下,管内工质的互激振荡流动更为剧烈,热量输送距离更远。研究结果为平行流热管换热器的优化设计提供了参考依据。  相似文献   

10.
11.
Experimental and numerical investigations are presented to illustrate the nanofluid flow and heat transfer characteristics over microscale forward-facing step (MFFS). The duct inlet and the step height were 400 μm and 600 μm respectively. All the walls are considered adiabatic except the downstream wall was exposed to a uniform heat flux boundary condition. The distilled water was utilized as a base fluid with two types of nanoparticles Al2O3 and SiO2 suspended in the base fluid. The nanoparticle volume fraction range was from 0 to 0.01 with an average nanoparticle diameter of 30 nm. The experiments were conducted at a Reynolds number range from 280 to 480. The experimental and numerical results revealed that the water–SiO2 nanofluid has the highest Nusselt number, and the Nusselt number increases with the increase of volume fraction. The average friction factor of water–Al2O3 was less than of water–SiO2 mixture and pure water. The experimental results showed 30.6% enhancement in the average Nusselt number using water–SiO2 nanofluid at 1% volume fraction. The numerical results were in a good agreement with the experimental results.  相似文献   

12.
Based on the method we suggested in a previous paper [Int. J. Heat Mass Transfer 45 (2002) pp. 2373-2385], the present work is to investigate the mixed convection problem. A two-dimensional, steady, laminar displacement ventilation model is adopted here for the interaction between the buoyancy driven natural convection and the external forced convection is important to achieve the goal of ventilation effectiveness. The solution is determined by the non-dimensional parameters Gr and Gr/Re2, the influences of which on the resulting heat and fluid flow are discussed. To optimize the ventilation system, different outlet locations are investigated. Results and comparisons show that the displacement ventilation guarantees a high indoor air quality (IAQ) and is therefore a desired air-conditioning system.  相似文献   

13.
In this study heat transfer and fluid flow of Al2O3/water nanofluid in two dimensional parallel plate microchannel without and with micromixers have been investigated for nanoparticle volume fractions of ϕ = 0, ϕ = 4%  and base fluid Reynolds numbers of Ref = 5, 20, 50. One baffle on the bottom wall and another on the top wall work as a micromixer and heat transfer enhancement device. A single-phase finite difference FORTRAN code using Projection method has been written to solve governing equations with constant wall temperature boundary condition. The effect of various parameters such as nanoparticle volume fraction, base fluid Reynolds number, baffle distance, height and order of arrangement have been studied. Results showed that the presence of baffles and also increasing the Re number and nanoparticle volume fraction increase the local and averaged heat transfer and friction coefficients. Also, the effect of nanoparticle volume fraction on heat transfer coefficient is more than the friction coefficient in most of the cases. It was found that the main mechanism of enhancing heat transfer or mixing is the recirculation zones that are created behind the baffles. The size of these zones increases with Reynolds number and baffle height. The fluid pushing toward the wall by the opposed wall baffle and reattaching of separated flow are the locations of local maximum heat transfer and friction coefficients.  相似文献   

14.
Enhanced boiling heat transfer using nanofluids is highly relevant due to its potential applications in thermal management of systems producing large heat fluxes. However, the sedimentation of nanoparticles limits their application in heat transfer systems. So, the preparation of a stable nanofluid remains a big research challenge. The stability issues arise due to the large difference in the density of nanoparticle and the base fluid. Graphite nanoparticle is selected in this study, as it has 4.5 times lower density than copper and comparable thermal conductivity. An experimental study is conducted to evaluate the suitability of graphite nanofluid in mesh wick heat pipes, which are devices that utilize boiling and condensation principles to transfer high heat fluxes. Thermal transport properties and boiling heat transfer characteristics showed enhancement and the effect of nanofluid on the device level thermal performance is thoroughly assessed. Experimental results are compared with the published literature. A reduction in thermal resistance by 32.5% and an improvement in the heat transfer coefficient by 48.02% in comparison with base fluid clearly indicate the superiority of the graphite nanofluid for heat transfer applications.  相似文献   

15.
The Burnett equations with slip boundary conditions are used to simulate the compressible gas flow and heat transfer in micro Poiseuille flow in the slip and transition flow regime. A relaxation method on Burnett terms is proposed in the present study and the thermal creep effect is considered. Convergent results at Knudsen number up to 0.4 are achieved and the results agree very well with experimental data. It is found that with the increase of Knudsen number, the Poiseuille number decreases while Nusselt number increases. The local Poiseuille number decreases along the whole channel while the local Nusselt number decreases rapidly first and then increases slowly afterwards.  相似文献   

16.
In this study, flow-field and heat transfer through a copper–water nanofluid around circular cylinder has been numerically investigated. Governing equations containing continuity, N–S equation and energy equation have been developed in polar coordinate system. The equations have been numerically solved using a finite volume method over a staggered grid system. SIMPLE algorithm has been applied for solving the pressure linked equations. Reynolds and Peclet numbers (based on the cylinder diameter and the velocity of free stream) are within the range of 1 to 40. Furthermore, volume fraction of nanoparticles (φ) varies within the range of 0 to 0.05. Effective thermal conductivity and effective viscosity of nanofluid have been estimated by Hamilton–Crosser and Brinkman models, respectively. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are investigated. It is found that the vorticity, pressure coefficient, recirculation length are increased by the addition of nanoparticles into clear fluid. Moreover, the local and mean Nusselt numbers are enhanced due to adding nanoparticles into base fluid.  相似文献   

17.
A finite difference analysis of heat conduction problem in a cylinder terminating in a frustum of a cone is presented. The constriction can be either in vacuum or in a gaseous environment. A fine mesh of 2500 × 800 was used for the construction of the grid such that very small constrictions could be analysed sufficiently accurately. Small constrictions i.e., small contact areas separated by large voids filled with a gas are typical of most practical applications involving contact heat transfer. The result of the finite difference analysis shows that gap conductance is predominant for all the gases considered. Gap-to-solid conductance ratio increases as the cone angle decreases due to the decrease of gap thickness. It also indicates that increase of conductance ratio is less significant at higher constriction angles. Finally, predicted conductance parameters are compared with the experimental results for different interfacial gases and a very good agreement is obtained.  相似文献   

18.
19.
Functions and lines have been extensively used to visualize two-dimensional fluid, heat and mass transportation structures. However, some ambiguities related to streamlines, heatlines and masslines still exist, especially for conjugate heat and mass transfer in anisotropic media. Present work aims to clarify these issues from numerical viewpoints, mainly including diffusion coefficient of transportation function at the interface of different media, different numerical approaches for solving visualization functions, non-dimensional forms of heatfunction and massfunction matching the spatial Nusselt and Sherwood numbers. The numerical procedures and code routines for the primitive conserved variables and the functions are illustrated through visualizing fluid, heat and solute transportations of double diffusive natural convection in square enclosures with massive walls or center-inserted body.  相似文献   

20.
Two-Phase Flow Patterns and Heat Transfer in Parallel Microchannels   总被引:1,自引:0,他引:1  
MicroChannel heat sinks with two-phase flow can satisfy the increasing heat removal requirements of modern micro electronic devices. One of the important aspects associated with two- phase flows in microchannels is to study the bubble behavior. However, in the literature most of the reports present data of only a single channel. This does not account for flow mixing and hydrodynamic instability that occurs in parallel microchannels, connected by common inlet and outlet collectors. In the present study, experiments were performed for air- water and steam- water flow in parallel triangular microchannels with a base of 200-300μ m. The experimental study is based on systematic measurements of temperature and flow pattern by infrared radiometry and high-speed digital video imaging. In air-water flow, different flow patterns were observed simultaneously in the various microchannels at a fixed values of water and gas flow rates. In steam-water flow, instability in uniformly heated microchannels was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号