首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Analysis has been carried out for the energy distribution and thermal mixing in steady laminar natural convective flow through the rhombic enclosures with various inclination angles, φ for various industrial applications. Simulations are carried out for various regimes of Prandtl (Pr) and Rayleigh (Ra) numbers. Dimensionless streamfunctions and heatfunctions are used to visualize the flow and energy distribution, respectively. Multiple flow circulations are observed at Pr = 0.015 and 0.7 for all φs at Ra = 105. On the other hand, two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 75° at higher Pr (Pr = 7.2 and 1000) and Ra (Ra = 105). Heatlines are found to be parallel circular arcs connecting the cold and hot walls for the conduction dominant heat transfer at Ra = 103. The enhanced convective heat transfer is explained with dense heatlines and convective loop of heatlines at Ra = 105. Heatlines clearly demonstrate that the left wall receives heat from the bottom wall as heatlines directly connect both the walls whereas the convective heat circulation cells play lead role to distribute the heat along the right wall, especially for smaller φs. On the other hand, the heat flow is evenly distributed to both side walls at higher φs via convection as well as direct conductive transport. Significant convective heat transfer from the bottom hot wall to the left cold wall occurs for φ = 30° cavity whereas the heat transfer to the right cold wall is maximum for φ = 75° irrespective of Pr. Average Nusselt number studies also show that φ = 30° cavity gives maximum heat transfer rate from the bottom to left wall irrespective of Pr in isothermal heating case. On the other hand, enhanced thermal mixing occurs at φ = 75° for both isothermal and non-isothermal heating strategies except at Pr = 0.015 in isothermal heating case.  相似文献   

2.
This article analyzes the detailed heat transfer phenomena during natural convection within tilted square cavities with isothermally cooled walls (BC and DA) and hot wall AB is parallel to the insulated wall CD. A penalty finite element analysis with bi-quadratic elements has been used to investigate the results in terms of streamlines, isotherms and heatlines. The present numerical procedure is performed over a wide range of parameters (103 ? Ra ? 105,0.015 ? Pr ? 1000,0° ? φ ? 90°). Secondary circulations cells are observed near corner regions of cavity for all φ’s at Pr = 0.015 with Ra = 105. Two asymmetric flow circulation cells are found to occupy the entire cavity for φ = 15° at Pr = 0.7 and Pr = 1000 with Ra = 105. Heatlines indicate that the cavity with inclination angle φ = 15° corresponds to large convective heat transfer from the wall AB to wall DA whereas the heat transfer to wall BC is maximum for φ = 75°. Heat transfer rates along the walls are obtained in terms of local and average Nusselt numbers and they are explained based on gradients of heatfunctions. Average Nusselt number distributions show that heat transfer rate along wall DA is larger for lower inclination angle (φ = 15°) whereas maximum heat transfer rate along wall BC occur for higher inclination angle (φ = 75°).  相似文献   

3.
In this work the numerical results of natural convection and surface thermal radiation in an open cavity receiver considering large temperature differences and variable fluid properties are presented. Numerical calculations were conducted for Rayleigh number (Ra) values in the range of 104–106. The temperature difference between the hot wall and the bulk fluid (ΔT) was varied between 100 and 400 K, and was represented as a dimensionless temperature difference (φ) for the purpose of generalization of the trends observed. Noticeable differences are observed between the streamlines and temperature fields obtained for φ = 1.333 (ΔT = 400 K) and φ = 0.333 (ΔT = 100 K). The total average Nusselt number in the cavity increased by 79.8% (Ra = 106) and 88.0% (Ra = 104) as φ was varied from 0.333 to 1.333. Furthermore the results indicate that for large temperature differences (0.667 ? φ ? 1.333) the radiative heat transfer is more important that convective heat transfer.  相似文献   

4.
Natural convection flows in a square cavity filled with a porous matrix has been studied numerically using penalty finite element method for uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls. Darcy–Forchheimer model is used to simulate the momentum transfer in the porous medium. The numerical procedure is adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  106, Darcy number Da, 10−5  Da  10−3, and Prandtl number Pr, 0.71  Pr  10) with respect to continuous and discontinuous thermal boundary conditions. Numerical results are presented in terms of stream functions, temperature profiles and Nusselt numbers. Non-uniform heating of the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Rayleigh numbers but average Nusselt number shows overall lower heat transfer rate for non-uniform heating case. It has been found that the heat transfer is primarily due to conduction for Da  10−5 irrespective of Ra and Pr. The conductive heat transfer regime as a function of Ra has also been reported for Da  10−4. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes the power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

5.
A numerical study to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls has been performed. A penalty finite element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations. The numerical procedure adopted in the present study yields consistent performance over a wide range of parameters (Rayleigh number Ra, 103  Ra  105 and Prandtl number Pr, 0.7  Pr  10) with respect to continuous and discontinuous Dirichlet boundary conditions. Non-uniform heating of the bottom wall produces greater heat transfer rates at the center of the bottom wall than the uniform heating case for all Rayleigh numbers; however, average Nusselt numbers show overall lower heat transfer rates for the non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained and for convection dominated regimes, power law correlations between average Nusselt number and Rayleigh numbers are presented.  相似文献   

6.
Numerical methods are used to solve the finite volume formulation of the two-dimensional mass, momentum and energy equations for steady-state natural convection inside a square enclosure. The enclosure consists of adiabatic horizontal walls and differentially heated vertical walls, but it also contains an adiabatic centrally-placed solid block. The aim of the study is to delineate the effect of such a block on the flow and temperature fields. The parametric study covers the range 103  Ra  106 and is done at three Pr namely, 0.071, 0.71 and 7.1. In addition the effect of increasing the size (characterized by the solidity Φ) of the adiabatic block is ascertained. It is found that the wall heat transfer increases, with increase in the Φ, until it reaches a critical value Φ = ΦOPT, where the wall heat transfer attains its maximum. Further increases in the block size beyond ΦOPT, reduces the wall heat transfer, for as the block size becomes larger than the conduction dominant core size it reduces the thermal mass of the convecting fluid. A steady-state heat transfer enhancement of 10% is observed for certain Ra and Pr values. Useful correlations predicting this optimum block size and the corresponding maximum heat transfer as a function of Ra and Pr are proposed; these predict within ±3%, the numerical results.  相似文献   

7.
Natural convection heat transfer from a heated thin plate located in the middle of a lid-driven inclined square enclosure has been analyzed numerically. Left and right of the cavity are adiabatic, the two horizontal walls have constant temperature lower than the plate’s temperature. The study is formulated in terms of the vorticity-stream function procedure and numerical solution was performed using a fully higher-order compact (FHOC) finite difference scheme on the 9-point 2D stencil. Air was chosen as a working fluid (Pr = 0.71). Two cases are considered depending on the position of heated thin plate (Case I, horizontal position; Case II, vertical position). Governing parameters, which are effective on flow field and temperature distribution, are Rayleigh number values (Ra) ranging from 103 to 105 and inclination angles γ (0° ? γ < 360°). The fluid flow, heat transfer and heat transport characteristics were illustrated by streamlines, isotherms and Nusselt number (Nu). It is found that fluid flow and temperature fields strongly depend on Rayleigh numbers and inclination angles. Further, for the vertical located position of thin plate heat transfer becomes more enhanced with lower γ at various Rayleigh numbers.  相似文献   

8.
The effect of radiative heat transfer on the hydromagnetic double-diffusive convection in two-dimensional rectangular enclosure is studied numerically for fixed Prandtl, Rayleigh, and Lewis numbers, Pr = 13.6, Ra = 105, Le = 2. Uniform temperatures and concentrations are imposed along the vertical walls while the horizontal walls are assumed to be adiabatic and impermeable to mass transfer. The influences of the optical thickness and scattering albedo of the semitransparent fluid on heat and mass transfer with and without magnetic damping are depicted. When progressively varying the optical thickness, multiple solutions are obtained which are steady or oscillatory accordingly to the initial conditions. the mechanisms of the transitions between steady compositionally dominated flow and unsteady thermally dominated flow are analyzed.  相似文献   

9.
The problem of natural convection in an inclined L-shaped enclosure filled with Cu/water nanofluid that operates under differentially heated walls in the presence of an inclined magnetic field is presented in this paper. The fully implicit finite difference method is used to solve the governing equations. A comparison with previously published results in special case of the present study is performed and a very good agreement is found. Heat transfer and fluid flow are examined for parameters of the Hartmann number (0  Ha  100), the nanoparticles volume fraction (0%  ϕ  20%), the cavity inclination angle (0°  ϑ  300°), the magnetic field inclination angle (0°  γ  270°), the cavity aspect ratio (0.25  AR  0.6) and the Rayleigh number (103  Ra  106). It is found that, the presence of the magnetic field in the fluid region causes a significant reduction in the fluid flow and heat transfer characteristics. Also, a good enhancement in the heat transfer rate can be obtained by adding the copper nanoparticles to the base fluid.  相似文献   

10.
The effect of the top and bottom wall temperatures on the natural convection heat transfer characteristics in an air-filled square cavity driven by a difference in the vertical wall temperatures was investigated by measuring the temperature distributions along the heated vertical wall and visualizing the flow patterns in the cavity. The experiments were performed at a horizontal Grashof number of 1.9 × 108. Increasing the top wall temperature resulted in a separated flow region on the top wall, which caused a secondary flow between the separated flow and the boundary layer on the heated vertical wall. This secondary flow had a significant effect on the heat transfer in this region. Changes in the top and bottom wall temperatures changed the temperature gradient and the average temperature of the air outside the thermal boundary layers in the cavity. The local heat transfer along much of the heated vertical wall could be correlated by Nu = C · Ra0.32, but the constant C increased when the average of the top and bottom wall temperatures increased.  相似文献   

11.
We have numerically reported the buoyancy induced flow and heat transfer characteristics inside an inclined L-shaped enclosure. A control volume based Finite-Volume method is applied to discretize the governing equations with collocated variable arrangement. SIMPLE algorithm is used and the system of equations is solved by Stone's SIP solver with full multigrid acceleration. Results are presented in the form of the average Nusselt number for a range of inclination angle, θ = 0°–360°; Rayleigh number, Ra = 1–105; and aspect ratio, A = 0.1–0.5.  相似文献   

12.
The process of vortex formation, distributions of pressure coefficients, and convective heat transfer in a turbulent flow past a cavity with a low aspect ratio and inclined frontal and rear walls were experimentally studied. The angle of wall inclination φ was varied in the interval from 30° to 90°. Visualization techniques were applied to trace the evolution of the flow with the angle φ as the transverse cavity became more open. Pressure fields in the longitudinal and transverse sections on the bottom wall of the cavity, and on its frontal and rear walls, were measured. The measured distributions of temperature in the longitudinal and transverse sections on the three heated walls, and the obtained thermographic fields over the whole heated surface, were used to calculate local and average heat-transfer coefficients. It is found that in the interval of wall inclination angles φ = 60–70° the flow in the cavity becomes unstable, with the primary vortex changing its structure from single-cellular to double-cellular. As a result, the distributions of static pressure and surface temperature across and along the cavity suffer dramatic changes. At smallest angles φ the flow re-attachment point gets displaced into the cavity to cause an abrupt growth of pressure and heat-transfer coefficients on the rear wall, which leads to a slight increase of the surface-mean pressure and heat transfer inside the cavity. At the angle of instability, φ = 60°, the local heat-transfer coefficient decreases markedly over the cavity span from the end faces of the cavity toward its center, and a most pronounced intensification of heat transfer is observed.  相似文献   

13.
A steady buoyancy-driven flow of air in a partially open square 2D cavity with internal heat source, adiabatic bottom and top walls, and vertical walls maintained at different constant temperatures is investigated numerically in this work. A heat source with 1% of the cavity volume is present in the center of the bottom wall. The cold right wall contains a partial opening occupying 25%, 50% or 75% of the wall. The influence of the temperature gradient between the verticals walls was analyzed for Rae = 103–105, while the influence of the heat source was evaluated through the relation R = Rai/Rae, investigated at between 400 and 2000. Interesting results were obtained. For a low Rayleigh number, it is found that the isotherm plots are smooth and follow a parabolic shape indicating the dominance of the heat source. But as the Rae increases, the flow slowly becomes dominated by the temperature difference between the walls. It is also observed that multiple strong secondary circulations are formed for fluids with a small Rae whereas these features are absent at higher Rae. The comprehensive analysis is concluded with horizontal air velocity and temperature plots for the opening. The numerical results show a significant influence of the opening on the heat transfer in the cavity.  相似文献   

14.
Mixed convection heat transfer from longitudinal fins inside a horizontal channel has been investigated for a wide range of modified Rayleigh numbers and different fin heights and spacings. An experimental parametric study was made to investigate effects of fin spacing, fin height and magnitude of heat flux on mixed convection heat transfer from rectangular fin arrays heated from below in a horizontal channel. The optimum fin spacing to obtain maximum heat transfer has also been investigated. During the experiments constant heat flux boundary condition was realized and air was used as the working fluid. The velocity of fluid entering channel was kept nearly constant (0.15 ? win ? 0.16 m/s) using a flow rate control valve so that Reynolds number was always about Re = 1500. Experiments were conducted for modified Rayleigh numbers 3 × 107 < Ra1 < 8 × 108 and Richardson number 0.4 < Ri < 5. Dimensionless fin spacing was varied from S/H = 0.04 to S/H = 0.018 and fin height was varied from Hf/H = 0.25 to Hf/H = 0.80. For mixed convection heat transfer, the results obtained from experimental study show that the optimum fin spacing which yields the maximum heat transfer is S = 8–9 mm and optimum fin spacing depends on the value of Ra1.  相似文献   

15.
In this paper, the effect of a magnetic field on natural convection in an open enclosure which subjugated to water/alumina nanofluid using Lattice Boltzmann method has been investigated. The cavity is filled with water and nanoparticles of Al2O3 at the presence of a magnetic field. Calculations were performed for Rayleigh numbers (Ra = 104–106), volume fractions of nanoparticles (φ = 0,0.02,0.04 and .0.06) and Hartmann number (0  Ha  90) with interval 30 while the magnetic field is considered horizontally. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and volume fractions. The magnetic field augments the effect of nanoparticles at Rayleigh number of Ra = 106 regularly. Just as the most effect of nanoparticles for Ra = 104 is observed at Ha = 30, so the most influence of nanoparticles occurs at Ha = 60 for Ra = 105.  相似文献   

16.
A numerical investigation of mixed convection is carried out to study the heat transfer and fluid flow characteristics in an inclined circular pipe using the finite volume method. The pipe has L/D of 500 and it was subjected to a uniform heat flux boundary condition. Four types of nanofluids (Al2O3, CuO, SiO2, and TiO2 with H2O) with nanoparticles concentration in the range of 0  φ  5% and nanoparticles diameter in the range of 20  dp  60 nm were used. The pipe inclination angle was in the range of 30  θ  75 using assisting and opposing flow. The influences of Reynolds number in the range of 100  Re  2000, and Grashof numbers in the range of 6.3 × 102  Gr  8.37 × 103 were examined. It is found that the velocity and wall shear stress are increased as Re number increases, while the surface temperature decreases. There is no significant effect of increasing Gr number on thermal and flow fields. The velocity and wall shear stress are increased and the surface temperature is decreased as φ and dp are decreased. It is concluded that the surface temperature is increased as the pipe inclination angle increases from the horizontal position (θ = 0°) to the inclined position (θ = 75°). In addition, it is inferred that the heat transfer is enhanced using SiO2 nanofluid compared with other nanofluids types. Furtheremore, it is enhanced using assisting flow compared to opposing flow.  相似文献   

17.
The two-dimensional steady-state natural convection of power-law fluids is studied numerically between two concentric horizontal cylinders with different constant temperatures. The governing equations are discretized using finite volume technique based on second order upwind and are solved using the SIMPLE algorithm. The effects of Rayleigh number (103  Ra  105) and Prandtl number (10  Pr  103) on the dimensionless velocity and temperature are investigated for both pseudoplastic and dilatant fluids. Also the mean Nusselt number for various values of governing parameters is obtained and discussed. The results indicate that with increasing the power-law index from 0.6 to 1.4, the mean Nusselt number decreases. In the best case among the range of parameters considered here the heat transfer rate for pseudo-plastic fluid (n = 0.6) is 170% higher than the Newtonian one and for dilatant fluid (n = 1.4) the heat transfer rate is 43% lower than the Newtonian fluid. So the pseudoplastic and dilatant fluids are more efficient than Newtonian fluids for cooling and insulating purposes, respectively. It is shown that as the Rayleigh number increases the cooling effect of pseudoplastic fluid and the insulating effect of dilatant fluid become more pronounced.  相似文献   

18.
A computational study of the thermal and dynamical behavior of fluid in an enclosure with two isothermal semi-circular heaters is presented. The top wall and the flat surfaces on bottom wall are adiabatic while the vertical walls are kept at lower temperature than the semi-circular heaters. The radius of curvature of the semi-circular surfaces is chosen as one tenth of the cavity wall length. The governing equations are solved by the Galerkin weighted residual finite element method. The effect of magnetic field on the flow is another important parameter in this study. Numerical simulations were performed for several values of Rayleigh number (103 ? Ra ? 106), Hartmann number (0 ? Ha ? 50) and the distance between two semi-circular heaters (0.2 ? D ? 0.8). In all cases the Prandtl number is taken as 7. It is found that the distance between the semi-circular heaters is the most important parameter affecting the heat and fluid flow fields. In addition, Hartmann number was found to have an adverse affect on heat transfer.  相似文献   

19.
A numerical investigation of natural convection in a Cu–water nanofluid-filled eccentric annulus with constant heat flux wall is presented. The governing equations of the flow and temperature fields are solved by lattice Boltzmann method (LBM), and the Dirichlet and Neumann boundary conditions are treated using the immersed boundary method (IBM). Influences of the Rayleigh number (103Ra ≤ 107), eccentricity (ε = −0.625,0 and 0.625), nanoparticles volume fraction (0 ≤ ϕ ≤ 0.03) and radial ratio (rr = 2.33,2.6 and 3) on the streamlines, isotherms and Nusselt number are studied. It is found that the inclusion of the nanoparticles into pure fluid changes the flow pattern. And the Nusselt number has a positive relationship with nanoparticle volume fraction, Rayleigh number and radial ratio. Also, it can be confirmed that Nusselt number in the case with negative eccentricity (ε = −0.625) is larger than the others.  相似文献   

20.
Natural convection in enclosures with uniform heat generation and isothermal side walls is studied here. For the rectangular enclosure, two-dimensional conservation equations are solved using SIMPLE algorithm. Parametric studies are conducted to examine the effects of orientation of the cavity, fluid properties (Pr number), and aspect ratio for Rayleigh numbers up to 106. For a horizontal square cavity, the flow becomes periodically oscillating at Ra = 5 × 104 and chaotic at Ra = 8 × 105. With a slight increase in the inclination angle, the oscillations die and for inclination angles greater than 150, the flow attain a steady state over a range of Ra. It is found that for tall cavities (aspect ratio > 1), the steady-state solution is obtained for all values of Ra considered here. However, for wide cavities (aspect ratio < 1), an oscillatory flow regime is observed. The maximum temperature within the cavity is calculated for the range of Ra, aspect ratio and Pr number. Correlations for the maximum cavity temperature is presented here. The values of critical Rayleigh number at which the convection sets in the rectangular cavity are also studied and two distinct criteria are determined to evaluate the critical Rayleigh number. Further, a three-dimensional simulation is performed for a cubic cavity. It is found that the steady state solutions are obtained for all Rayleigh number, except at Ra = 106. This is in contrast to the predictions for a two-dimensional square cavity, which has an oscillatory zone from Ra = 5 × 104 onwards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号