首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aims to evaluate the performance of an integrated phase change material (PCM) solar collector. The dynamic behavior of the system is investigated via a theoretical model based on the first law of thermodynamics and oriented to deliver a maximum outlet water temperature. A parametric study is used to assess the effects of the inlet water temperature, the PCM thicknesses and properties and the mass flow rates on the outlet water temperature and the melt fraction. A comparison with a conventional solar water heater without heat storage is made. Results indicate that charging and discharging processes of PCM offer six stages. It is observed that the complete solidification time is longer than the melting one. The latent heat storage system increases the heating requirements at night. The rise is most enhanced for higher inlet water temperature, melting PCM temperature and PCM thickness and for lower mass flow rate.  相似文献   

2.
Night purge ventilation is a well-known passive technique for conserving cooling energy by storing night coolth in the thermal mass of the building fabric. We study the effect of phase change materials (PCM) as a light thermal mass, on the cooling load of a typical office building with HVAC system and night purge ventilation in hot-arid climate. In this paper the proper conditions to start night ventilation and the ventilation rate by fans is determined. Additionally, the effect of melting point temperature of the PCMs on the cooling load of the building is investigated. PCMs with proper melting temperature were applied to various building elements, and to the whole model. It was revealed that, application of PCMs will significantly contribute in reducing the cooling load, except for the floor on the ground, which resulted in an increase of the load.  相似文献   

3.
Utilisation of solar energy and the night ambient (cool) temperatures are the passive ways of heating and cooling of buildings. Intermittent and time-dependent nature of these sources makes thermal energy storage vital for efficient and continuous operation of these heating and cooling techniques. Latent heat thermal energy storage by phase-change materials (PCMs) is preferred over other storage techniques due to its high-energy storage density and isothermal storage process. The current study was aimed to evaluate the performance of the air-based PCM storage unit utilising solar energy and cool ambient night temperatures for comfort heating and cooling of a building in dry-cold and dry-hot climates. The performance of the studied PCM storage unit was maximised when the melting point of the PCM was ~29°C in summer and 21°C during winter season. The appropriate melting point was ~27.5°C for all-the-year-round performance. At lower melting points than 27.5°C, declination in the cooling capacity of the storage unit was more profound as compared to the improvement in the heating capacity. Also, it was concluded that the melting point of the PCM that provided maximum cooling during summer season could be used for winter heating also but not vice versa.  相似文献   

4.
Cooling demand in the building sector is growing rapidly; thermal energy storage systems using phase change materials (PCM) can be a very useful way to improve the building thermal performance. This work shows the benefits of PCM when incorporated in wood fiber-polymer composite as floor cooling system using nano-encapsulated PCMs. The wood-plastic-NPCM composites were produced using compression molding process and its mechanical and thermal properties were investigated. Two dynamic simulators were employed to investigate synthesized composites thermal performance. Increasing NPCM content in WPC showed that the fluctuations of the simulator temperature was decreased while the heat fluxes through the floor was increased. The variations of ambient maximum temperature have little effect on the air temperature of the simulator with 40% PCM which indicates that the amount of PCM was enough for studied environmental condition. Field experiments were performed using two medium-scale test houses located on Tehran-Iran. It can be concluded that using NPCM helps to reduce heating and cooling demand. Moreover, the natural night ventilation by opening windows reduced the number of hours that the temperature is above 23°C from 499 h/year in case1 (without opening) to 255 h/year in case 2(with opening). This means that natural night ventilation could help reduce the overheating period to about 50% with the use of NPCM.  相似文献   

5.
This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes.  相似文献   

6.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

7.
This article presents an experimental and numerical analysis of cooling buildings using night‐time cold accumulation in phase change material (PCM), otherwise known as the ‘free‐cooling principle’. Experimental and numerical studies of the ceiling and floor free‐cooling principle, as well as passive cooling, are presented. The free‐cooling principle is explained and some of the types of PCMs suitable for summer cooling are listed. An experiment was conducted using paraffin with a melting point of 22°C as the PCM to store cold during the night‐time and to cool hot air during the daytime in summer. Air temperatures and heat fluxes as a function of time and dimensionless cold discharging values are presented for different air velocities. Experimental analysis of one week of measuring under real conditions is presented in order to show how cold storage functions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A parametric analysis is conducted for space cooling systems based on cold water flowing, during the night, within regularly arranged pipes embedded in a layer of phase change material (PCM), located among the structural layers of the ceiling. The introduced PCM layer in conjunction with night cooling add to the usual ceiling cooling systems offers the advantages of low energy consumption, high cool storage capacity, operation under reduced night electricity price, smoothing of electricity consumption by eliminating daily peak loads, improved thermal comfort and elimination of ceiling dripping. Our parametric analysis is based on a transient three‐dimensional finite‐difference solution of the related heat‐transfer problem for various values of all the main system parameters. PCM phase change process is simulated by using the effective thermal capacity function, which is determined experimentally for PCM suitable for air‐conditioning applications. Our tests showed that the main parameters of the system are pipe spacing, PCM layer thickness, pipe depth within the ceiling, cooling water inlet temperature, night cooling duration and PCM properties (thermal conductivity, phase change heat and ends of phase change temperature range). The effect of all the above parameters is analysed and suggestions are made for selecting the proper combinations of their values in order to obtain the lowest energy consumption in conjunction with the highest level of thermal comfort. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Thermal energy storage is critical for reducing the discrepancy between energy supply and energy demand, as well as for improving the efficiency of solar thermal energy systems. Among the different types of thermal energy storage, phase-change materials (PCM) thermal energy storage has gained significant attention recently because of its high energy density per unit mass/volume at nearly constant temperature. This study experimentally investigates the using of a triplex tube heat exchanger (TTHX) with PCM in the middle tube as the thermal energy storage to power a liquid desiccant air-conditioning system. Four longitudinal fins were welded to each of the inner and middle tubes as a heat transfer enhancement in the TTHX to improve the thermal performance of the thermal energy storage. The average temperature of the PCM during the melting process in the TTHX with and without fins was compared. The PCM temperature gradients in the angular direction were analyzed to study the effect of the natural convection in the melting process of the thermal storage. The energy storage efficiency of the TTHX was determined. Results indicated that there was a considerable enhancement in the melting rate by using fins in the TTHX thermal storage. The PCM melting time is reduced to 86% by increasing of the inlet heat transfer fluid. The average heat storage efficiency calculated from experimental data for all the PCMs is 71.8%, meaning that 28.2% of the heat actually was lost.  相似文献   

10.
Thermal performance of a hybrid space-cooling system with night ventilation and thermal storage using shape-stabilized phase change material (SSPCM) is investigated numerically. A south-facing room of an office building in Beijing is analyzed, which includes SSPCM plates as the inner linings of walls and the ceiling. Natural cool energy is charged to SSPCM plates by night ventilation with air change per hour (ACH) of 40 h−1 and is discharged to room environment during daytime. Additional cool-supply is provided by an active system during office hours (8:00-18:00) necessary to keep the maximum indoor air temperature below 28 °C. Unsteady simulation is carried out using a verified enthalpy model, with a time period covering the whole summer season. The results indicate that the thermal-storage effect of SSPCM plates combined with night ventilation could improve the indoor thermal-comfort level and save 76% of daytime cooling energy consumption (compared with the case without SSPCM and night ventilation) in summer in Beijing. The electrical COPs of night ventilation (the reduced cooling energy divided by fan power) are 7.5 and 6.5 for cases with and without SSPCM, respectively.  相似文献   

11.
The imbalance of electrical demand in summer due to cooling system demand is a big problem in many countries. One promising solution is shifting peak demand from early afternoon to night by utilizing natural cold energy resources such as cool outside air during night or running a refrigerator driven by midnight power. In these cases, using the thermal energy storage (TES) of phase change material (PCM) which has a melting point from 15 to 25 °C is one of the most effective ideas. However, few suitable PCMs for this temperature range are at present commercially available. This study aims to evaluate the potential of Mn(NO3)2 · 6H2O (manganese (II) nitrate hexahydrate) as a new PCM for the TES of cooling systems. First, experiments on the modulation of the melting point of Mn(NO3)2 · 6H2O and reduction of supercooling were made by dissolving small amounts of salts in the material. Consequently, MnCl2 · 4H2O was found to have good performance with regard to both modulation of the melting temperature and the heat of fusion. Next, a thermal response test was carried out by using a small cylindrical vessel. Results showed that the required temperature levels for charging and discharging the heat of this mixture were clarified. In addition, the price and safety of this material as a PCM are discussed.  相似文献   

12.
An experimental analysis is presented to establish the thermal performance of a latent heat thermal storage (LHTS) unit. Paraffin is used as the phase change material (PCM) on the shell side of the shell and tube‐type LHTS unit while water is used as the heat transfer fluid (HTF) flowing through the inner tube. The fluid inlet temperature and the mass flow rate of HTF are varied and the temperature distribution of paraffin in the shell side is measured along the radial and axial direction during melting and solidification process. The total melting time is established for different mass flow rates and fluid inlet temperature of HTF. The motion of the solid–liquid interface of the PCM with time along axial and radial direction of the test unit is critically evaluated. The experimental results indicate that the melting front moves from top to bottom along the axial direction while the solidification front moves only in the radial direction. The total melting time of PCM increases as the mass flow rate and inlet temperature of HTF decreases. A correlation is proposed for the dimensionless melting time in terms of Reynolds number and Stefan number of HTF. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21120  相似文献   

13.
Compared to solar water heaters, high-temperature solar air heaters have received relatively little investigation and have resulted in few commercial products. However, in the context of a humidification–dehumidification (HD) desalination cycle, air heating offers significant performance gains for the cycle. Heating at a constant temperature and constant heat output is also important for HD cycle performance. The use of built in phase change material (PCM) storage is found to produce consistent air outlet temperatures throughout the day or night. In this study, the PCM has been implemented directly below the absorber plate. Using a two dimensional transient finite element model, it is found that a PCM layer of 8 cm below the absorber plate is sufficient to produce a consistent output temperature close to the PCM melting temperature with a time-averaged collector thermal efficiency of 35%. An experimental energy storage collector with an 8 cm thick PCM layer was built and tested in a variety of weather and operating conditions. Experimental results show strong agreement with model in all cases.  相似文献   

14.
A phase-change energy storage system consisting of sections of different materials with different melting temperatures is proposed for air conditioning applications. The Phase Change Materials (PCMs) are placed in thin flat containers and air is passed through gaps between them. A semi-analytical model has been developed and calculations carried out using the finite elements method. Results obtained from three models with different assumptions are compared. The effect of the design parameters such as, PCM slab thickness and fluid passage gap on the storage performance is also investigated. The system is being developed for energy storage in solar heating and energy efficient space heating and cooling applications.  相似文献   

15.
One of the first rehabilitated passive energy standard office buildings in Europe was extensively monitored over two years to analyse the cooling performance of a ground heat exchanger and mechanical night ventilation together with the summer comfort in the building. To increase the storage mass in the light weight top floor, phase change materials (PCM) were used in the ceiling and wall construction. The earth heat exchanger installed at a low depth of 1.2 m has an excellent electrical cooling coefficient of performance of 18, but with an average cooling power of about 1.5 kW does not contribute significantly to cooling load removal. Mechanical night ventilation with 2 air changes also delivered cold at a good coefficient of performance of 6 with 14 kW maximum power. However, the night air exchange was too low to completely discharge the ceilings, so that the PCM material was not effective in a warm period of several days. In the ground floor offices the heat removal through the floor to ground of 2–3 W m−2 K−1 was in the same order of magnitude than the charging heat flux of the ceilings. The number of hours above 26 °C was about 10% of all office hours. The energy performance of the building is excellent with a total primary energy consumption for heating and electricity of 107–115 kW h m−2 a−1, without computing equipment only 40–45 kW h m−2 a−1.  相似文献   

16.
A mathematical model for the overall exergetic efficiency of two phase change materials named PCM1 and PCM2 storage system with a concentrating collector for solar thermal power based on finite-time thermodynamics is developed. The model takes into consideration the effects of melting temperatures and number of heat transfer unit of PCM1 and PCM2 on the overall exergetic efficiency. The analysis is based on a lumped model for the PCMs which assumes that a PCM is a thermal reservoir with a constant temperature of its melting point and a distributed model for the air which assumes that the temperature of the air varies in its flow path. The results show that the overall exergetic efficiency can be improved by 19.0-53.8% using two PCMs compared with a single PCM. It is found that melting temperatures of PCM1 and PCM2 have different influences on the overall exergetic efficiency, and the overall exergetic efficiency decreases with increasing the melting temperature of PCM1, increases with increasing the melting temperature of PCM2. It is also found that for PCM1, increasing its number of heat transfer unit can increase the overall exergetic efficiency, however, for PCM2, only when the melting temperature of PCM1 is less than 1150 K and the melting temperature of PCM2 is more than 750 K, increasing the number of heat transfer unit of PCM2 can increase the overall exergetic efficiency. Considering actual application of solar thermal power, we suggest that the optimum melting temperature range of PCM1 is 1000-1150 K and that of PCM2 is 750-900 K. The present analysis provides theoretical guidance for applications of two PCMs storage system for solar thermal power.  相似文献   

17.
Both cool roof and phase change thermal storage are promising technologies in decreasing building energy consumption. Combining these two technologies is likely to further enhance the thermal comfort of the building as well as reduce air condition loads. In this paper, the cooling performance and energy-saving effects of four types of roof (normal roof, phase change material [PCM] roof, cool roof, and cool PCM roof [cool roof coupled with PCM]) were investigated under a simulated sunlight. Experimental results indicate that compared with normal roof, the other three roofs are able to narrow the indoor temperature fluctuation and decrease the heat flow entering into the room. Among them, cool PCM roof gave the best energy-saving effect that can lower the indoor temperature and heat entering into rooms by 6.6°C and 52.9%, respectively. Besides, the PCM location, PCM thickness, and insulation thickness exerted great impacts on the cooling performance of the roof. Placing the PCM on the internal layer beneath the extruded polystyrene (XPS) insulation board can make the indoor temperature 1.2°C lower than that on the middle layer. Although thicker PCM panels or insulation boards can provide a better thermal insulation, 5 mm in PCM thickness and 20 mm in insulation thickness are enough to guarantee the indoor temperature of cool PCM roof system at a comfortable range (22°C-28°C) for a whole day. These findings will give guidance in designing buildings with a light and compact roof structure to decrease energy consumption and improve comfort level.  相似文献   

18.
A computer program was proposed to simulate the behavior of a low-temperature phase-change material (PCM) in a heat exchanger for short-term storage. An experimental set-up of mainly a heat exchanger with a staggered tube arrangement and air temperature control unit were used. In the modeling approach, the PCM in the tube was divided into 10 concentric cells of equal mass, and was logically treated in terms of energy balance. Experimental inlet air temperature (at three different flow rates) was utilized as input data to test the model output results and their reliability. Excellent agreement was obtained for the outlet air temperature when compared with the experimental measurements, and differences did not exceed 0.5°C over the simulated period. The predicted PCM average temperature history showed good agreement with the experimental ones, and differences did not exceed 2° at the highest applied air flow rate. This modeling approach can be used for any PCM, provided that its thermophysical properties are available. The transient moving front for freezing or melting can be predicted, and consequently the mass fraction of either liquid or solid phase to the total PCM mass can be predicted as well.  相似文献   

19.
Dynamic physical model for a solar chimney   总被引:4,自引:0,他引:4  
The aim of this research is to investigate the theoretical usefulness of a solar chimney with thermal inertia applied to the Mediterranean climates, offering nocturnal ventilation benefits. A mathematical dynamical model is proposed to evaluate the energy performance of a solar chimney with 24 cm concrete wall as storage surface for solar radiation. The results obtained with the proposed model are coherent with several models response and experiments reported on solar chimneys. As well, the difference of the proposed model to others is the incorporation of an unsteady state and the inclusion of thermal inertia. The results show that for a 2 m height and width of air channel of 14.5 cm, 0.011 kg/s air mass flow rate is obtained for 450 W/m2. The 24 cm thickness concrete wall, reaches its greater temperature 2 h later with respect to the maximum ambient temperature, maintaining its temperature over the beginning of the night, so nocturnal ventilation is achieved. The model shows the interest in continuing investigating on this cooling techniques and to built a solar chimney with thermal inertia for future experimental research.  相似文献   

20.
《能源学会志》2020,93(1):76-86
To explore thermal management integration in electric vehicles (EVs), a phase change materials (PCMs) thermal energy storage unit using flat tubes and corrugated fins is designed. The investigation focuses on the thermal characteristics of the PCM unit, such as the temperature variation, heat capacity, and heat transfer time, etc. Meanwhile, the heat storage and release process will be influenced by different inlet temperature, liquid flow rate, melting point of the PCM, and the combination order of the units. Under the same inlet temperature and flow rate condition, the PCM unit with higher melting point enters the latent heat storage stage slowly and enters the phase change melting release stage quickly. Furthermore, the heat storage and release rates increase with increasing liquid flow rates, but the effects are diminishing in the middle and later periods. The multiple PCM units with different melting temperatures are cascaded to help recycle low-grade heat energy with different temperature classes and exhibit well heat storage and release rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号