首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以全流道式平板型太阳能集热器为研究对象,首先进行了集热性能试验测试,在此基础上,利用CFD技术对不同排管管径全流道吸热板内传热介质的流动与传热进行模拟。试验结果表明,全流道集热器集热性能好、保温性能优,最高瞬时集热效率可达86.1%,热损失系数仅为4.179 W/(m~2·℃);与有关国家标准比较,最高瞬时集热效率高14.1%,热损失系数低1.82 W/(m~2·℃)。模拟结果表明:全流道板芯在增大流体传热接触面积的同时产生了横向导流作用,使各排管间流体流量分布更为均衡;全流道板芯热阻小,壁面上热流分布均匀,有效地增大了板芯的对流换热。  相似文献   

2.
In this paper we present a theoretical model of the black liquid flat plate solar energy collector. Numerical calculations have been performed corresponding to the experiments of Minardi and Chuang (1975). The present model has a good agreement with the experiments of Minardi and Chuang. A study of the effects of varying parameters, such as the liquid flow rate, radius and length of the tube has been made corresponding to the average solar intensity and ambient temperature data of 20 June 1974 in Ohio, U.S.A. The system's performance has also been studied for tropical climates.  相似文献   

3.
In conventional flat-plate solar collectors, tubes are welded or pressed to a flat-plate. A tubeless flat-plate collector has no tubes welded or pressed to absorber plate. It is merely two-parallel plates made of galvanized steel, and welded to each other. This configuration reduces thermal resistance greatly; a matter which reflects on its efficiency. Those types of collectors proved to be more efficient and economic than conventional flat-plate solar collectors.  相似文献   

4.
One of the important parameters that affects the performance of a flat plate solar collector is its angle of tilt with the horizontal. This is due to the fact that the variation of tilt angle changes the top loss coefficient and the amount of solar radiation reaching the absorber plate. A mathematical model has been developed for calculating the useful energy gained by a flat plate collector under various operating conditions. The model is then used to determine the optimum tilt angles for a typical collector in Basrah on a daily basis, as well as on the basis of a specified period. The optimum tilt angle is found by searching its value for which the useful energy gained by the collector is a maximum for a particular day or a specified period.From the results, it is observed that changing the tilt angle eight times in a year determines the useful energy in Basrah near its value which is found by changing the tilt angle daily to its optimum value. Furthermore, the influence of various operating parameters is studied on the daily optimum tilt angle.  相似文献   

5.
杨积科 《太阳能》2010,(3):35-36
提出利用预留空间结构的防冻方案,并取得了初步研究成果。  相似文献   

6.
Optimization of a wickless heat pipe flat plate solar collector   总被引:4,自引:0,他引:4  
The transient thermal behaviour of wickless heat pipe flat plate solar collectors has been analyzed with regard to various parameters. These parameters include global solar radiation intensity, inlet cooling water temperature, absorber plate material and thickness, ratio of pitch distance to wickless heat pipe diameter and ratio of condenser section length to total wickless heat pipe length. The results show that the selection of an absorber plate having a high value of conduction heat transfer rate per unit temperature difference is limited by the pitch distance.  相似文献   

7.
The OSE Project aims at developing the technology to utilize solar energy for heating, cooling and hot water supply on the basis of various technology for energy conservation in buildings. For the first step of this project a solar heating and cooling system with flat plate collectors and absorption refrigeration machine was installed in a house in 1974. This paper reports outlines of the system and operating results.  相似文献   

8.
提出了一种适用于太阳能供热采暖工程的新型太阳能空气-水复合平板集热器。该集热器可以单独使用空气、水或同时以空气和水作为集热工质。测试显示,该集热器空气循环集热效率为55%~65%,水循环集热效率为32%~34%,能够满足太阳能供热采暖工程的要求。该集热器成本不高,适用于在我国北方广大农村地区推广使用。  相似文献   

9.
In the present paper we present an experimental analysis and a thermal and hydrodynamic modelling of a newly designed flat-plate solar collector characterized by its corrugated channel and by the high surface area directly in contact with the heat transport fluid. The thermal and hydrodynamic modelling of the collector has been performed by means of the Finite Element Method (FEM), validated with analytical results for a well-known fin-and-tube type solar collector. The thermodynamic efficiency of the collector is analyzed by means of its experimental heating curves. The yield of the new collector has been compared to a previously existing commercial collector of related geometry but with less area in direct contact with the heat transport fluid. The experimental results are seen to adequately fit the simulation predictions, and a methodology to use in order to compute the parameters characterizing the thermal behavior of the collector is introduced.  相似文献   

10.
In order to cope up with the increase in energy demand and decline in fossil fuels, it has become imperative to use renewable resources efficiently. Among these renewable resources, solar thermal energy is abundant in nature. Solar water heating systems are one of the most important applications of solar thermal energy. Providing internal fins to absorber tube is the technique to improve heat transfer augmentation. Hence in the present study, experiments were performed on solar flat plate collector with different cross section of absorber tubes (plain tube and internally grooved tubes with different helix angles) and by varying the mass flow rates of the working fluids. This study reports the experimental results of flat plate collector, where the working fluid is water and aqueous ethylene glycol (50 : 50). Temperature profile of grooved absorber tube will be compared with plain tube. Since conversion efficiency of solar devices is low, the present study mainly focuses on improving the efficiency of solar flat plate collector.  相似文献   

11.
The transient periodic characteristics of flat-plate solar collectors, subjected to the solar intensity fluctuation, were discussed analytically and experimentally. The fluctuation of the flux of global solar radiation in Tokyo was measured and discussed in relation to cloud condition and cloud behaviour. The data were analyzed by power-spectrum analysis to know the dominant fluctuation period. Next, indoor simulations were performed using a bank of infrared lamps. The temperature distribution of flat-plate solar collectors, and their outlet water temperature response were measured under the bank, varying the radiative heat flux periodically. An exact and simple physical model forusual solar collectors was proposed, and its basic equations were derived. Numerical results by these equations showed good agreement with experimental results. The dependencies of outlet water temperature response on various physical parameters, such as heat capacity of the contained water, the water flow rate and the wind velocity over the cover glass, were also discussed by calculations.  相似文献   

12.
A study of the effects of various collector design parameters on the performance of a solar powered solid absorption refrigerator is presented. The refrigerator uses specially treated CaCl2 as absorbent and NH3 as refrigerant and operates intermittently in a diurnal cycle. The study is undertaken using version 4.0 of a simulation programme, COSSOR, developed from a transient analysis of the system. A large number of simulations was undertaken to test the performance of the refrigerator for various choices of the collector design parameters. The latter include the plate emissivity and material; absorbent pellet diameter, thermal conductivity and packing density; collector tube size, spacing and material; and number of glazing. The refrigerator performance indicators, namely total condensate yield, mass of ice produced, coefficient of performance and effective cooling, are presented for the range of values of the collector parameters of interest. Using a multiple linear regression technique, the performance indicators are correlated with the collector parameters by simple linear polynomial expressions. An objective function, suitable for selecting optimal values of the parameters, is defined, subject to specified constraints. Optimization was then carried out for the objective function. For the collector with steel tubes and steel plate, the refrigerator coefficient of performance obtained with optimal choices of tube size, spacing and plate emissivity is 0.073, representing an improvement of at least 30% with respect to the reference collector. A similar level of improvement was obtained for a collector with aluminium tubes and plate.  相似文献   

13.
In this paper, the effectiveness of ferrofluid as a working fluid for solar flat plate collectors (FPCs) is studied. A mini-ferrofluid-based solar FPC is designed and tested under laboratory conditions. The thermal performance of the designed solar FPC is evaluated under different conditions and it is observed that it provides higher efficiency for the case of ferrofluid in the presence of a magnetic field. The thermal efficiency is observed to increase by 54% for ferrofluid in presence of a magnetic field as compared to no magnetic field. The thermal efficiency is observed to increase further with the increase in the magnetic field. The increase in thermal efficiency is attributed to the combined effects of higher thermal conductivity and magnetohydrodynamics of ferrofluid, which result in higher convective heat transfer from the riser tube walls into ferrofluid. The higher heat transfer for ferrofluid with a magnetic field is established by calculating the Nusselt number numerically using COMSOL. Simulation results show an increase in Nusselt number for ferrofluid with magnetic field and hence higher thermal efficiency for the solar FPC. The designed FPC provides simple modifications to conventional FPCs to use ferrofluid with magnetic field for higher thermal efficiencies.  相似文献   

14.
In systems design, suitably adapted physical models are required. Different modelling approaches for a solar air collector were studied in this paper. First, a classical model was produced, based on a linearization of the conservation of energy equations. Its resolution used traditional matrix methods. In order to improve the possibilities for use in design, the behaviour of the collector was next expressed in terms of efficiency. Lastly, simplified models constructed from the results obtained with the classical linearized model, and explicitly including the design variables of the collector, were proposed. These reduced models were then evaluated in terms of Parsimony, Exactness, Precision and Specialisation (PEPS). It was concluded that one of them (D2), using a low number of variables and of equations, is well suited for the design of solar air collector coupled with other sub-systems in more complex devices such as solar kiln with energy storage.  相似文献   

15.
We analyse the performance of a flat-plate collector with a constant rate of evaporation of flowing water between a glass cover and an absorbing plate. The effects of fluid-flow velocity, depth of fluid and length of the absorbing surface are discussed. We have allowed for periodic variation of the solar intensity and ambient air temperature during a typical day in New Delhi.  相似文献   

16.
17.
The experimental set up for evaluating the performance of a solar collector with a fluid undergoing phase change is described. The effect of insolation and the liquid level on the collector performance has been studied with acetone and petroleum ether 40–60°C. The Hottel-Whillier equation, when modified to include the fraction of liquid level, correlates the experimental data. The collector efficiency increases linearly with liquid level.  相似文献   

18.
Experimental data indicate that high temperature and high performance can be obtained using dual purpose solar collector (DPSC) compared to single water or air collector. A mathematical model based on effectiveness method has been developed for the investigation of thermal performance of DPSC. In the collector two fluids (water and air) flow simultaneously. Three different kinds of channels are used to enhance the performance of collector, such as: rectangular fin, triangular fin and without fin. Simulation results show that channels with rectangular fin have better performance compared with others. The effect of water inlet temperature and air flow rate on heat delivery by air and water has been investigated.  相似文献   

19.
Different concepts and designs of photovoltaic thermal (PV/T) collectors were developed for the past few decades to improve the electrical and thermal efficiencies. Several of those designs have become successful and are being commercialized along with other solar collectors. This paper discusses the experimental studies on a novel PV/T water-based collector constructed by laminating the PV cells on a copper thermal absorber. This modification reduced the thermal resistance by 9.93 %, thereby enabling better heat transfer from the PV cells to the heat transfer fluid. Water was passed through a single water channel connected to an open reservoir. Experiments were conducted with and without glazing, with two different water mass flow rates and stagnant conditions, and with load and no-load conditions and thermal stress test. Results show that an overall efficiency of 87.52 % was achieved in the presence of glazing at a mass flow rate of 0.1 kg/s. Few conformance tests according to IEC standards are also presented to check the electrical insulation and structural integrity of the PV/T collector.  相似文献   

20.
新型平板热管式太阳能PV/T集热系统的性能研究   总被引:1,自引:0,他引:1  
文章搭建了新型平板热管式太阳能PV/T集热系统实验台,测试了该集热系统的热电性能。此外,建立了该集热系统的数学模型,并将该集热系统的测量结果和模拟结果进行对比分析,以验证该数学模型的准确性。最后,在相近的测试条件下,对新型平板热管式太阳能PV/T集热系统和传统圆形热管式太阳能PV/T集热系统的热电性能进行对比分析。分析结果表明,在相近的测试条件下,与传统圆形热管式太阳能PV/T集热系统相比,新型平板热管式太阳能PV/T集热系统的日平均热效率和日平均电效率分别提升了16.8%和3.5%,总集热量和总发电量分别提升了78.4%和35.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号