首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
In this paper, a fractal tree-like microchannel net heat sink (20 mm × 20 mm × 1.4 mm) for cooling of electronic chips was fabricated on a silicon wafers by advanced MEMS technology. The length, width and height of the entrance microchannel were 10 mm, 800 μm and 25 μm, respectively. The fractal dimension D and the circulation number m of the fractal tree-like microchannel net were 2 and 4, respectively. It is confirmed experimentally that the thermal efficiency (defined as heat transfer rate per unit power required) of such a fractal tree-like microchannel heat sink is much higher than that of the traditional parallel microchannel heat sink for the same heat transfer rate, the same temperature difference and the same inlet velocity.  相似文献   

2.
Ratiometric laser induced fluorescence (LIF) thermometry is developed as a tool for temperature measurements using microscale visualization methods. Rhodamine B (RhB) and Rhodamine 110 (Rh110) are used as the temperature-dependent and temperature-independent dyes, respectively. The temperature responses of the two dyes are carefully measured as a function of concentration. The traditional two-dye LIF technique is compared to the single-dye LIF technique for microfluidic temperature measurement. The capabilities of these methods are demonstrated by visualizing the mixing plane between a hot and a cold fluid stream near a ‘T’ junction. The method is then applied to study the non-uniform temperature profiles generated due to flow maldistribution in a silicon microchannel heat sink. The experimental results illustrate the importance of proper design of inlet and outlet manifolds to maximize the performance of a microchannel heat sink. The technique is demonstrated to have a maximum uncertainty of ±1.25 °C for single-pixel measurements and a minimum uncertainty of ±0.6 °C for measurements averaged over a large area in a temperature range of 20–50 °C.  相似文献   

3.
Experiments on removing high heat fluxes from GaN-on-SiC semiconductor dies using microchannel coolers are described. The dies contain an AlGaN/GaN heterostructure operated as a direct current resistor, providing a localized heat source. The active dimensions of the heat source are sized to represent the spatially-averaged heat flux that would appear in microwave power amplifiers. A wide variety of microchannel materials and configurations are investigated, allowing a comparison of performance and the resulting GaN temperatures. Silicon and AlN microchannel coolers exhibit good performance at lower power densities (1000–1200 W/cm2 over 3 × 5 mm2 to 2 × 5 mm2 active areas). Polycrystalline chemical vapor deposited (CVD) SiC microchannel coolers are found to be extremely promising for higher power densities (3000–4000 W/cm2 over 1.2 × 5 mm2 active areas with 120 °C GaN temperature). A hybrid microchannel cooler consisting of low-cost CVD diamond on polycrystalline CVD SiC exhibits moderately better performance (20–30%) than polycrystalline CVD SiC alone.  相似文献   

4.
The flow distribution in a silicon microchannel heat sink was studied using infrared micro-particle image velocimetry (IR μPIV). The microchannel test piece consisted of seventy-six 110 μm wide × 371 μm deep channels etched into a silicon substrate. Inlet and outlet manifolds, also etched into the substrate, were fed by 1.4 mm inner-diameter tubing ports. An image-processing algorithm was developed that significantly improves the quality of IR μPIV recordings in low signal-to-noise ratio environments. A general expression for the PIV measurement depth is presented, which is valid for PIV images that have undergone a threshold image-processing operation. Experiments were performed at two different flow rates: 10 ml/min (Re = 10.2) and 100 ml/min (Re = 102). Little flow maldistribution was observed at the lower flow rate. However, significant flow maldistribution was observed at Re = 102, with the channels near the centerline having an approximately 30% greater mass flux than the channels near the lateral edges of the heat sink. Numerical simulations carried out for flow in the microchannel heat sink agreed very well with the experimental measurements, validating the use of a computational approach for studying the effect of manifold design on flow distribution in microchannel heat sinks.  相似文献   

5.
Boiling in microchannels is widely considered as one of the front runners in process intensification heat removal. Flow boiling heat transfer in microchannel geometry and the associated flow instabilities are not well understood, further research is necessary into the flow instabilities adverse effect on heat transfer.Boiling is induced in microchannel geometry (hydraulic diameter 727 μm) to investigate several flow instabilities. A transparent, metallic, conductive deposit has been developed on the exterior of rectangular microchannels, allowing simultaneous heating and visualisation.Presented in this paper is data for a particular case with a uniform heat flux of 4.26 kW/m2 applied to the microchannel and inlet liquid mass flowrate, held constant at 1.13 × 10?5 kg/s. In conjunction with obtaining high-speed images, a sensitive infrared camera is used to record the temperature profiles on the exterior wall of the microchannel, and a data acquisition system is used to record the pressure fluctuations over time. Various phenomena are apparent during the flow instabilities; these can be characterised into timescales occurring at 100’s seconds, 10’s seconds, several seconds and finally milliseconds. Correlation of pressure oscillations with temperature fluctuations as a function of the heat flux applied to the microchannel is possible.From analysis of our results, images and video sequences with the corresponding physical data obtained, it is possible to follow simultaneously particular flow, pressure and temperature conditions leading to nucleate boiling, flow instabilities and transition regimes during flow boiling in a microchannel. The investigation allowed us to quantify and characterise the timescales of various observed instabilities during flow boiling in a microchannel. High speed imaging revealed some of the controlling physical mechanisms responsible for the observed instabilities.  相似文献   

6.
With the rapid development of the information technology (IT) industry, the heat flux in integrated circuit (IC) chips cooled by air has almost reached its limit about 100 W/cm2. Some applications in high technologies require heat fluxes well beyond such a limitation. Therefore the search of a more efficient cooling technology becomes one of the bottleneck problems of the further development of IT industry. The microchannel flow geometry offers large surface area of heat transfer and a high convective heat transfer coefficient. However, it has been hard to implement because of its very high pressure head required to pump the coolant fluid though the channels. A normal channel could not give high heat flux although the pressure drop is very small. A minichannel can be used in heat sink with a quite high heat flux and a mild pressure loss. A minichannel heat sink with bottom size of 20 mm × 20 mm is analyzed numerically for the single-phase laminar flow of water as coolant through small hydraulic diameters and a constant heat flux boundary condition is assumed. The effects of channel dimensions, channel wall thickness, bottom thickness and inlet velocity on the pressure drop, thermal resistance and the maximum allowable heat flux are presented. The results indicate that a narrow and deep channel with thin bottom thickness and relatively thin channel wall thickness results in improved heat transfer performance with a relatively high but acceptable pressure drop. A nearly-optimized configuration of heat sink is found which can cool a chip with heat flux of 256 W/cm2 at the pumping power of 0.205 W. The nearly-optimized configuration is verified by an orthogonal design. The simulated thermal resistance agrees quite well with the result of conventional correlations method with the maximum difference of 12%.  相似文献   

7.
This paper reports the results of an experimental investigation of the performance of finned heat sinks filled with phase change materials for thermal management of portable electronic devices. The phase change material (PCM) used in this study is n-eicosane and is placed inside a heat sink made of aluminium. Aluminium acts as thermal conductivity enhancer (TCE), as the thermal conductivity of the PCM is very low. The heat sink acts as an energy storage and a heat-spreading module. Studies are conducted for heat sinks on which a uniform heat load is applied for the unfinned and finned cases. The test section considered in all cases in the present work is a 80 × 62 mm2 base with TCE height of 25 mm. A 60 × 42 mm2 plate heater with 2 mm thickness is used to mimic the heat generation in electronic chips. Heat sinks with pin fin and plate fin geometries having the same volume fraction of the TCE are used. The effect of different types of fins for different power level (ranging from 2 to 7 W) in enhancing the operating time for different set point temperatures and on the duration of latent heating phase were explored in this study. The results indicate that the operational performance of portable electronic device can be significantly improved by the use of fins in heat sinks filled with PCM.  相似文献   

8.
This study presents a novel pulsating heat pipe (PHP) concept that is functional even when PHP is with fewer turns and is operated horizontally. Two heat pipes were made of copper capillary tubes with an overall size of 122 mm × 57 mm × 5.5 mm is investigated, one had 16 parallel square channels having a uniform cross-section of 2 mm × 2 mm (uniform CLPHP), and the other had 16 alternative size of parallel square channels (non-uniform CLPHP; a cross-section 2 mm × 2 mm and a cross-section of 1 mm × 2 mm in alternating sequence). Test results showed that the performance of PHP rises with the inclination but the uniform channel CLPHP is not functional at horizontal configuration whereas the proposed non-uniform design is still functional even at horizontal arrangement. The thermal resistance for uniform PHP is relative insensitive to change of inclination when the inclination angle exceeds certain threshold value.  相似文献   

9.
A microchannel test section comprised of parallel square microchannels with a 25 × 25 μm and 50 × 50 μm cross section was manufactured. Boiling of perfluorinated dielectric fluid FC-72 and water in microchannels was studied. Troublesome occurrences associated with flow boiling in microchannels were reduced or eliminated with inlet/outlet restrictors, inlet/outlet manifolds and potential nucleation cavities incorporated in the array of microchannels. The gradual reduction of channel cross section in the manifolds ensured a uniform distribution of the working fluid among the microchannels. The flow restrictors provided a higher upstream pressure drop in comparison with the downstream pressure drop which favors vapor flow in the downstream direction and consequentially suppresses the vapor backflow present in flow boiling. The superheat of the microchannel wall necessary for the onset of boiling was decreased significantly with the incorporation of properly sized artificial cavities. Experimental results confirmed the benefits of the etched features, as there was (i) an even working fluid distribution (ii) without dominating backflows of vapor (iii) at a low temperature of the onset of boiling. Bubble growths as well as other events in the microchannels were visualized with a high-speed imaging system which captured images at over 87,000 frames per second. Results exhibit boiling hysteresis dependence of the working fluid and its mass flux through the microchannels. The temperature of the onset of boiling is highly dependent on the working fluid, microchannel size and its roughness.  相似文献   

10.
Critical heat flux (CHF) and pressure drop of subcooled flow boiling are measured for a microchannel heat sink containing 75 parallel 100 μm × 200 μm structured surface channels. The heated surface is made of a Cu metal sheet with/without 2 μm thickness diamond film. Tests and measurements are conducted with de-ionized water, de-ionized water +1 vol.% MCNT additive solution, and FC-72 fluids over a mass velocity range of 820–1600 kg/m2 s, with inlet temperatures of 15(8.6)°C, 25(13.6)°C, 44(24.6)°C, and 64(36.6)°C for DI water (FC-72), and heat fluxes up to 600 W/cm2. The CHF of subcooled flow boiling of the test fluids in the microchannels is measured parametrically. The two-phase pressure drop is also measured. Both CHF and the two-phase friction factor correlation for one-side heating with two other side-structured surface microchannels are proposed and developed in terms of the relevant parameters.  相似文献   

11.
This study reports thermal performance of a shrouded 348 mm × 558 mm aluminum plate-fin heat sink subject to various input powers and orientations. Effects of clearance (C) and the orientation on the heat transfer of the heat sink were investigated. Results show that the clearance effect is detectable only in a “window region” between 5 mm and 10 mm where an appreciable rise of heat transfer coefficient is encountered. As the tilted angle (θ) of the LED panel is increased, the heat transfer coefficient is reduced and the clearance effect on heat transfer becomes more pronounced. The heat transfer coefficients are similar between two cases in which the tilted angles of the LED panel are supplementary irrespective of clearance and input power. Except the cases of a horizontal heat sink, heat transfer coefficient of the shrouded heat sink having a fin array facing downward is usually slightly higher than that having supplementary tilted angle.  相似文献   

12.
Using water or acetone as the working fluid, the thermal performance of a three-dimensional flat-plate oscillating heat pipe (3D FP-OHP) with staggered microchannels was experimentally investigated by varying heating area, cooling temperature and operating orientation. It was found that when the heating area is larger at the same input power, the heat pipe is less orientation-dependent. When the heating area was decreased, to form a localized heating condition and higher heat flux, the thermal resistance and peak-to-peak amplitudes of temperature oscillations in the evaporator increased. The utilization of water as the working fluid generally provided the lowest thermal resistance for all experimental conditions investigated, but – unlike acetone – resulted in more severe temperature fluctuations in the evaporator during localized heating. The 3D FP-OHP, with overall dimensions of 130.18 × 38.10 × 2.86 mm3, demonstrated to efficiently manage heat fluxes as high as approximately 300 W/cm2 at a total heat load of 300 W.  相似文献   

13.
Experiments were conducted to investigate forced convective cooling performance of a copper microchannel heat sink with Al2O3/water nanofluid as the coolant. The microchannel heat sink fabricated consists of 25 parallel rectangular microchannels of length 50 mm with a cross-sectional area of 283 μm in width by 800 μm in height for each microchannel. Hydraulic and thermal performances of the nanofluid-cooled microchannel heat sink have been assessed from the results obtained for the friction factor, the pumping power, the averaged heat transfer coefficient, the thermal resistance, and the maximum wall temperature, with the Reynolds number ranging from 226 to 1676. Results show that the nanofluid-cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient and thereby markedly lower thermal resistance and wall temperature at high pumping power, in particular. Despite the marked increase in dynamic viscosity due to dispersing the alumina nanoparticles in water, the friction factor for the nanofluid-cooled heat sink was found slightly increased only.  相似文献   

14.
A novel framework is developed to determine the optimal operating conditions of water cooled microprocessor chips through a tradeoff between heat recovery from the coolant and the chip thermal reliability. For illustration, a manifold microchannel heat sink is evaluated experimentally and computationally. First, a single objective optimization is demonstrated by combining the heat recovery and chip reliability into a single parameter. Then, multi-objective optimizations are performed by using Pareto optimality and Multi-Criteria Design Analysis. Using conservative guidelines, these approaches suggest that for an optimal coolant flow rate of 1 l/m, optimal coolant inlet temperature lies between 40 and 50 °C.  相似文献   

15.
《Journal of power sources》2005,145(2):702-706
An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2O3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al2O3 pellets prepared by ‘incipient wetness’ were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H2, 24.5% CO2 and 2.2% CO at 230–260 °C which can produce power output of 59 Wt.  相似文献   

16.
This experimental study aims to investigate the heat transfer characteristics of single-phase turbulent flow of R-134a refrigerant in a rectangular multi-micro channel heat sink having 27 channels where each channel has a hydraulic diameter of 421 μm. Experimental results were obtained for inlet temperatures ranging from 24 to 33 °C, mass fluxes from 1485 to 2784 kg m 2 s 1 and wall heat fluxes from 3 to 24 kW m 2. The results indicate that the heat transfer coefficients are found to be higher at lower inlet temperatures than those at higher ones. In addition, when equal amount of heat supplied to the heat sink, the heat transfer coefficients increase with increasing the mass flux of refrigerant. They were also compared with 12 well-known correlations and it was seen that 4 of 12 were in good agreement with each other with the average deviation < 10%. The findings demonstrate that well-known correlations in fundamental sources can be used to predict the heat transfer coefficient of R-134a during its single phase flow in a multiport microchannel heat sink under turbulent regime.  相似文献   

17.
《Applied Thermal Engineering》2007,27(11-12):1883-1894
In this study, basic electro-magnetic and heat transfer theories were applied to simulate the electro-magnetic and temperature fields in a steel hollow cylinder subjected to step-wise induction heating from outside. Three different sizes (Pipe A, Do × Di × L = 95 mm × 29 mm × 1000 mm, Pipe B, Do × Di × L = 110 mm × 39 mm × 1120 mm, Pipe C, Do × Di × L = 131 mm × 47 mm × 1450 mm) of the workpieces were numerically and experimentally investigated and compared. The temperatures on the inside and outside surface of the workpiece during the induction heating process were measured by thermocouples and an infrared thermal imaging system, respectively. The applied power input is a steep-wise function (constant high power, 0–8 min, and decrease to it 60%, 8–12 min, and then increase it original high power, 12–20 min). The process of induction heating heats the hollow cylinder from ambient temperature above the Curie point. It is shown that the inside temperature of the hollow cylinder is below the outside temperature initially (0–8 min), and then a constant temperature is held for approximately 4 min and finally the inside temperature is higher than the outside temperature. The numerical results agreed with the experimental data within 15%. The numerical simulation of three different air gaps (5 mm, 15 mm and 25 mm) between the coil and the workpiece were also performed. It is found that the temperature is increased as the air gap is decreased. The average temperatures of the hollow steel for air gap = 5 mm are 10 °C and 15 °C higher those for air gap = 15 mm, 25 mm, respectively.  相似文献   

18.
Non-uniform heat flux generated by microchips causes “hot spots” in very small areas on the microchip surface. These hot spots are generated by the logic blocks in the microchip bay; however, memory blocks generate lower heat flux on contrast. The goal of this research is to design, fabricate, and test an active cooling micro-channel heat sink device that can operate under atmospheric pressure while achieving high-heat dissipation rate with a reduced chip-backside volume, particularly for spot cooling applications. An experimental setup was assembled and electro-osmotic flow (EOF) was used thus eliminating high pressure pumping system. A flow rate of 82 μL/min was achieved at 400 V of applied EOF voltage. An increase in the cooling fluid (buffer) temperature of 9.6 °C, 29.9 °C, 54.3 °C, and 80.1 °C was achieved for 0.4 W, 1.2 W, 2.1 W, and 4 W of heating powers, respectively. The substrate temperature at the middle of the microchannel was below 80.5 °C for all input power values. The maximum increase in the cooling fluid temperature due to the joule heating was 4.5 °C for 400 V of applied EOF voltage. Numerical calculations of temperatures and flow were conducted and the results were compared to experimental data. Nusselt number (Nu) for the 4 W case reached a maximum of 5.48 at the channel entrance and decreased to reach 4.56 for the rest of the channel. Nu number for EOF was about 10% higher when compared to the pressure driven flow. It was found that using a shorter channel length and an EOF voltage in the range of 400–600 V allows application of a heat flux in the order of 104 W/m2, applicable to spot cooling. For elevated voltages, the velocity due to EOF increased, leading to an increase in total heat transfer for a fixed duration of time; however, the joule heating also got elevated with increase in voltage.  相似文献   

19.
The behavior of a two-phase thermosyphon, consisting of a microchannel evaporator plate and a condenser, is investigated to gain insight into the system limiting instability. A microchannel plate has been fabricated with 56 square channels that have a 1 × 1 mm cross section and a length of 115 mm. Experiments have been conducted for various condenser heights with the heat flux as the control variable. A step increase in heat flux is used to quantify the response of the system, including variations in mass flow rate, temperature, and pressure drop. Results show that small fluctuations about the steady state give rise to the instability for situations with a uniform heat load. A predictive model based on the momentum equation is introduced to estimate the onset of instability, and the threshold heat flux is predicted to within ±10% uncertainty.  相似文献   

20.
Thermal performance in terms of enhancement ratios and the effect of orientation of a copper porous matrix filled phase change material (PCM) based heat sink are experimentally studied in this paper. N-eicosane is used as the phase change material. A copper open cell metal foam, press fitted into an aluminium casing is the thermal conductivity enhancer. In PCM based heat sinks, low thermal conductivity associated with PCMs makes the use of enhancement techniques inevitable for better thermal performance. A plate heater with an overall dimension of 60 × 42 mm2 with 2 mm thickness is used to mimic the heat generation in electronic chips. The effect of orientation of the heat sink on thermal performance is studied by developing a tracking system, capable of placing the heat sink at any specified orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号