首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bed voidage was measured in liquid‐fluidized beds having tube bundles embedded vertically in beds, and the heat transfer coefficient was measured on the outer surface of the tube. There were six kinds of test channels used, and a total of nine types of particles of glass and ceramics were tested. The measured bed voidage agreed well with those developed for in‐column fluidization, when the hydraulic equivalent diameter was used. Measured heat transfer coefficients on the vertically embedded tube bundles were higher than those on the vertically embedded single tubes, the calculated values for the in‐column fluidization, and the calculated values for the horizontally embedded tube bundles. Correlations for predicting the heat transfer coefficient were derived for the vertically embedded tube bundles and single tubes. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20267  相似文献   

2.
Heat transfer coefficients were measured on tube bundles of fundamental layouts including in‐line layouts embedded horizontally in a liquid‐fluidized bed. Tested tube layouts were single tubes, transverse single tube rows, longitudinal single tube rows, and in‐line arranged tube bundles. A total of 7 kinds of particles were used. Comparisons of the experimental data showed a good agreement with the heat transfer correlation developed for staggered layouts, when the average liquid velocity through each tube bundle was used as the reference velocity for the particle Reynolds number. Distribution of the local heat transfer coefficient was also investigated around tubes. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20245  相似文献   

3.
Heat transfer during oscillatory flow in a circular straight tube with a solid‐core tube inserted in its center was numerically simulated. The purpose of the solid‐core tube is to enhance axial heat transfer by increasing the lateral heat transfer effect for high frequency of the oscillatory flow. Simulation results showed that (a) axial heat transfer increases with the increasing diameter of the solid‐core tube, (b) the material of the solid‐core tube does not significantly affect axial heat transfer, and (c) efficiency based on the ratio of heat transfer to the work done is higher than that in a bundle of circular capillary tubes. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 61–74, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20094  相似文献   

4.
A new method of heat transfer enhancement by water crossflow‐induced vibration is presented. A heat transfer element which involves elastic tube bundles has been designed. This system has excellent response characteristics of vibration to the crossflow. A triangular pole device for producing pulsating flow was adopted. This device can induce vibration in a fixed range of frequencies and has a profound influence on heat transfer augmentation. For the constant heat flux boundary condition, experiments are carried out on the heat transfer characteristics of elastic tube bundles augmented by flow‐induced vibration in a water crossflow. Compared with static tube bundles, the out‐tube average convective heat transfer coefficients of the elastic tube bundles are increased by 100–150% under the condition of crossflow‐induced vibration. Dimensionless equations describing the outside heat transfer coefficient for the elastic tube bundles were acquired. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(4): 211–218, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20012  相似文献   

5.
《传热工程》2012,33(9):828-834
Experiments were conducted for pool boiling on the outside of 8 × 3 (eight rows and three columns) plain and coated tube (surface roughness = 8.279 μm) bundles for three different pitch distances with the distinct objective to study the behavior and the enhancement of boiling heat transfer in horizontal staggered tube bundles (of plain and coated tubes for different equilateral triangular arrangements) with heat flux values ranging from ~12 to 45 kW/m2. At higher heat fluxes, coated and plain tube bundles had almost similar bundle average heat transfer coefficients at a given pitch distance, while at lower heat fluxes, the coated tube bundles have higher bundle average heat transfer coefficients as compared to that of the plain tube bundle. The coated tube bundles with the minimum pitch to diameter ratio of 1.4 exhibited the maximum bundle average heat transfer coefficients. The present study concludes that the bundle factor needs to be considered in the design of flooded evaporators.  相似文献   

6.
对不同翅片间距Sf、管束横向节距St和管束纵向节距Sl的9组螺旋翅片管束的换热和流动过程进行了试验研究.分析了换热过程的熵产,研究了雷诺数(RP)、翅片间距、管束横向节距和管束纵向节距对管束换热熵产数NsH、流动熵产数NsF和总熵产数Ns的影响.结果表明:对不同布置方式的管束,随着Re的增加,NsH迅速减小,NsF逐渐增加,Ns先减小后增加;翅片间距对NsH影响较小,在高Re下,翅片间距增大时,NsF和Ns均明显降低;横向节距对NsH几乎没影响,但随着横向节距的增加,NsF和Ns均明显降低;管束纵向节距对NsH、NsF和Ns的影响都很小.  相似文献   

7.
The effect of fins on heat transfer around a tube in an aligned‐arranged tube bundle was investigated experimentally, and the obtained results were compared for three arrangements, i.e., single tube, single tube row, and staggered‐arrangement. It was found from the experiment that the effect of fins begins to appear in an aligned‐arrangement with larger fin spacing than in a staggered‐arrangement. The degradation in the local heat transfer coefficient due to fins can be recognized not only on the rear region of the tube, as observed in other arrangements, but also on the frontal region. As a result of this phenomenon, the degradation in the average heat transfer coefficient in an aligned‐arrangement becomes larger than in other arrangements with the same fin spacing. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(8): 555–563, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20091  相似文献   

8.
Effect of fins on heat transfer around a tube was investigated experimentally. A test tube of 30 mm diameter was installed in a test section of an open‐type wind tunnel as a single tube, or as a center tube in a single tube row and in a tube bundle of staggered layout. Fins made of paper were put on the test tube having certain fin spacing. It was clarified from the experiment that the local heat transfer coefficient around the tube degrades with decreasing fin spacing, especially on the downstream side of the tube, and the minimum fin spacing where the effect of the fin begins to appear is the largest for the single tube and the smallest for the tube bundle. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 445–454, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10098  相似文献   

9.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

10.
An experiment was conducted to obtain heat transfer data in liquid–solid circulating fluidized beds. In the experiment, two kinds of risers were provided, their inner diameter being 24 mm and 12 mm, respectively. Tested particles were of glass and ceramics, having a diameter range from 2.10 to 4.95 mm. Water at ambient conditions was used as the fluidizing liquid. The experimental data showed a trend where the heat transfer coefficient increases gradually with increasing liquid velocity approaching that for a liquid single‐phase flow (“heat transfer enhanced region”), and finally coincides with that for a liquid single‐phase flow (“liquid single‐phase heat transfer region”). The heat transfer coefficient in the heat transfer enhanced region was found to be a function of the slip velocity between liquid and particles. Based on the experimental data, a correlation was proposed for predicting the heat transfer coefficient in the entire region from the heat transfer enhanced region to the liquid single‐phase heat transfer region, which could reproduce the experimental data with an accuracy of ±15%. The proposed correlation agreed well with existing data. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(3): 127–137, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20200  相似文献   

11.
Slush hydrogen is a mixture of liquid hydrogen and solid hydrogen particles, and is being considered as a spaceplane fuel or as a means of transport for hydrogen used as a source of clean energy. This paper describes nucleate boiling heat transfer characteristics of slush hydrogen and slush nitrogen. For the visual observation of heat transfer states, a heat transfer unit was placed in a glass Dewar designed to minimize the heat loss from an atmospheric environment. The heat transfer unit used was a circular flat plate 0.025 m in diameter made of electrolytic tough pitch copper. During testing, three different orientations of the heat transfer surface were used: horizontal facing up, vertical, and horizontal facing down. Heat transfer data for the normal boiling point (NBP) of liquid hydrogen, the triple point (TP) of liquid hydrogen, the NBP of liquid nitrogen, and the TP of liquid nitrogen were obtained up to the critical heat flux (burnout). These data for slush hydrogen and nitrogen, including the results of observation of the heat transfer surface were compared. This clarified the nucleate boiling heat transfer characteristics of slush hydrogen and slush nitrogen, which have rarely been investigated. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(1): 13–28, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10068  相似文献   

12.
This study was performed to investigate the heat extraction characteristics from shallow geothermal resources using a coaxial heat exchanger. First, a computer simulation program for a coaxial heat exchanger was checked and verified by laboratory experiments. After inspecting the effectiveness of the computer program described herein, a numerical simulation for a real scale model was conducted under the condition that the heat transfer mechanism in the stratum was heat conduction. Unsteady heat extraction characteristics are presented herein, and the effects of the tube material, inner diameter, and circular modes on the heat extraction rate are discussed. From the computer results it was found that the heat extraction performance using a coaxial heat exchanger greatly depended on the factors mentioned above in the range of the parameters covered in this study. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(7): 496–513, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20083  相似文献   

13.
The effect of mass concentration of magnetic particles and an applied magnetic field on pool boiling heat transfer of water‐based magnetic fluid on a horizontal heater was investigated. The experimental results show that high‐concentration magnetic fluid deteriorates boiling heat transfer, while middle‐ and low‐concentration magnetic fluid enhances the boiling heat transfer. There was an optimum concentration in which the enhancement of boiling heat transfer was the best. Conclusions were the same with an applied magnetic field that enhances the boiling heat transfer of magnetic fluid further. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(3): 180–187, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20054  相似文献   

14.
Heat transfer coefficients were measured during pool boiling of binary mixtures on a heated wire hung horizontally and bubble behavior was simultaneously captured with a high‐speed video camera. The experiment was carried out at a pressure of 0.4 and 0.7 MPa for the whole range of mass fractions in a binary mixture of R22/R11. We clarified the change in bubble behavior and heat transfer by measuring the bubble departure diameter, frequency and growth rate on the basis of the video images. Furthermore, we discussed the relationship between the bubble behavior and the boiling heat transfer coefficient in the binary mixtures. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(7): 449–459, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20087  相似文献   

15.
In recent years the requirements for the reduction of energy consumption have been increasing to solve the problems of global warming and the shortage of petroleum resources. For example in the power generation field, as thermal power generation occupied 60% of the power generation demand, an improvement in thermal efficiency is greatly needed. This paper describes the clarification of heat transfer characteristics of finned tube banks used for a heat exchanger in thermal power generation by testing serrated finned tubes banks for a heat transfer improvement and conventional spiral finned tube banks under the same test conditions. The equations to predict the heat transfer coefficient necessary to design the heat exchanger are proposed. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(2): 120–133, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20043  相似文献   

16.
In this paper, the performance of flat plate finned tube heat exchangers operating under frosting conditions was investigated experimentally. Heat exchangers of single and multiple tube row(s) were tested to show the effects of various parameters on heat transfer performance. The parameters include temperature and relative humidity of air, flow rate of air, refrigerant temperature, fin pitch, and row number. The time variations of heat transfer rate, overall heat transfer coefficient, and pressure drop of heat exchangers presented.  相似文献   

17.
Boiling heat transfer of R-134a on a porous, plasma-coated tube bundle was investigated experimentally to determine the effects of the number of tube rows and the total tube number. The bundle consists of up to four tubes with a pitch-to-diameter-ratio of 1.33. Heat transfer coefficients for a single tube with a porous copper coating were up to four times higher than for a smooth tube. Observations showed that the plasma coating enhanced the heat transfer coefficient in tube bundles as well. The bundle factor of the coated tube bundle showed a similar, slightly increased trend as the smooth tube bundles. The enhancement effect of the coated tubes decreases to a certain extent with an increasing heat flux and decreasing saturation temperature. However, it is significantly less pronounced than trends that have been reported from other investigations. The aim of a stable enhanced coating was confirmed by long-term experiments with steady results.  相似文献   

18.
The convection‐condensation heat transfer of vapor‐gas mixtures in a vertical tube was studied theoretically and experimentally. The effects of the condensation of a small amount of water vapor (8 to 20%) on heat transfer in a vertical tube were discussed. Comparisons show that theoretical solutions obtained through modified film model and experimental results are in good agreement. The results show that the condensation heat transfer of a small amount of water vapor and single‐phase convection heat transfer in the vapor‐gas mixtures are of the same order of magnitude, and these two modes of heat transfer could not be neglected. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(7): 531–539, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10055  相似文献   

19.
An experimental investigation of the heat transfer and pressure drop performance of ten finned tube bundles using serrated fins is presented. All tube bundles had staggered layouts, and the influence on varying tube bundle layout, tube and fin parameters are presented. The heat transfer coefficient experienced a maximum when the flow areas in the transversal and diagonal planes were equal. An increase in the fin pitch increased the heat transfer coefficient; the same was observed with an increase in fin height. The pressure drop coefficient showed no influence of the tube bundle layout for small pitch ratios, but dropped significantly for higher ratios. Increasing fin pitch reduced the pressure drop, whereas varying fin height had insignificant effect. None of the literature correlations were able to reproduce the experiments for the entire range of tested conditions. A set of correlations were developed, reproducing the experimental data to within ±5% at a confidence interval of 95%.  相似文献   

20.
In this study, a prediction model for condensation heat transfer on a vertical dispersed finned surface was proposed, utilizing the Adamek‐Webb model for condensation heat transfer outside a horizontal finned tube. The prediction model was based on two main experimental observation results. One is the phenomena of the condensate retention at the bottom of each row of the dispersed fin. Another is the offset phenomena of the condensate flow between each row of the dispersed fin. Given the results by the present model, it is predicted that the dependence of the condensation heat transfer coefficient for the dispersed finned surface on the fin pitch is controlled mainly by the dispersed fin length, not the total fin length. On the contrary, for a different fin pitch, the effect to the condensation heat transfer by dispersing the fin is different. From comparison with the experiment results, it is confirmed that the present model was able to predict the condensation with extremely good precision when the fin pitch was larger. Further, when the fin pitch was smaller, the predicted values were higher than the experimental values, but the tendency of the condensation heat transfer with dispersing the fin was nearly predicted. In addition, this condensing model can predict the experimental values with an error of 25% at the maximum in a range of fin pitch 0.6 mm to 1 mm. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20288  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号