首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of fins on heat transfer around a tube was investigated experimentally. A test tube of 30 mm diameter was installed in a test section of an open‐type wind tunnel as a single tube, or as a center tube in a single tube row and in a tube bundle of staggered layout. Fins made of paper were put on the test tube having certain fin spacing. It was clarified from the experiment that the local heat transfer coefficient around the tube degrades with decreasing fin spacing, especially on the downstream side of the tube, and the minimum fin spacing where the effect of the fin begins to appear is the largest for the single tube and the smallest for the tube bundle. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 445–454, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10098  相似文献   

2.
A total of 23 cross-flow heat exchangers having crimped spiral configurations is studied. The effect of tube diameter, fin spacing, transverse tube pitch, and tube arrangements are examined. For the inline arrangement, the pressure drop increases with the rise of tube diameter but the associated heat transfer coefficient decreases with it. The increase of fin height also gives rise to considerable increase of pressure drop and decrease of heat transfer coefficients for the inline arrangement. However, for the staggered arrangement, the effect of the fin height on the pressure drop is much smaller than that of the inline arrangement due to the major contribution to the total pressure drops from the blockage of the airflow from staggered arrangement. Effect of the fin spacing on the air side performance is strongly related to the transverse tube pitch for both inline and staggered arrangements. Correlations of the present crimped spiral fins in both staggered and inline arrangements are developed. The proposed correlations give fairly good predictive ability against the present test data.  相似文献   

3.
The present work submits an experimental work on the heat transfer and friction loss characteristic, employing a tube finned heating surface kept at a constant temperature in a rectangular channel. The tube fins attached on the surface (o.d.=29 mm) were arranged as either in‐line or staggered. The parameters for the study were Reynolds number (3700–30 000), depending on hydraulic diameter, the distance between the tube fins in the flow direction (Sy/D=1.72–3.45) and the fin arrangement. The change in the Nusselt number with these parameters was determined. For both tube fin arrangements, it was observed that increasing Reynolds number increased Nusselt number, and maximum heat transfer occurred at Sy/D=2.59. Thermal performances for both arrangements were also determined and compared with respect to heat transfer from the same surface without fins. With staggered array, a heat transfer enhancement up to 25 per cent for Sy/D=3.45 in staggered array was achieved in constant pumping power. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Heat transfer on tube bundles embedded horizontally in a liquid‐fluidized bed was investigated experimentally. In the experiment, a total of 5 kinds of tube bundles in an equilateral triangular staggered arrangement, including a single tube, was used. Tested particles were of glass and ceramics, and their diameter range was from 2.1 to 6.0 mm. It was found that the distribution of local heat transfer coefficients around a tube depends not on the kind of particles, but on the tube pitch only, when a good fluidizing condition is maintained. Based on the experimental data, a new method was proposed to predict average heat transfer coefficient, which can be applicable for tube bundles having a tube pitch to diameter ratio of 1.2 to infinity (single tube). © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(2): 85–98, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20048  相似文献   

5.
Heat transfer improvement in a water wall tube with fins was investigated in a circulating fluidized bed (CFB) boiler. Experiments were first conducted in a 6 MWth CFB boiler then a model was developed to analyse and interpolate the results. Temperatures at some discrete points within the wall cross‐section of the tube were measured by burying 0.8 mm thermocouples within a tube. Experimental data showed an increase in heat absorption up to 45 per cent. A good agreement between measured and predicted values was noted. The distribution of temperature in the metal wall and of heat flux around the outer wall of a tube with longitudinal and lateral fins was analysed by numerical solution of a two‐dimensional heat conduction equation. Effects of bed‐to‐wall heat transfer coefficient, water‐to‐tube inside heat transfer coefficient, bed temperature, water temperature and thermal conductivity of the tube material on the heat flux around the water tube are discussed. The present work also examines the influence of the length of the longitudinal fin and the water tube thickness. Heat flux was highest at the tip of the longitudinal fin. It dropped, but increased again near the root of the lateral fin. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
An experimental investigation of the heat transfer and pressure drop performance of ten finned tube bundles using serrated fins is presented. All tube bundles had staggered layouts, and the influence on varying tube bundle layout, tube and fin parameters are presented. The heat transfer coefficient experienced a maximum when the flow areas in the transversal and diagonal planes were equal. An increase in the fin pitch increased the heat transfer coefficient; the same was observed with an increase in fin height. The pressure drop coefficient showed no influence of the tube bundle layout for small pitch ratios, but dropped significantly for higher ratios. Increasing fin pitch reduced the pressure drop, whereas varying fin height had insignificant effect. None of the literature correlations were able to reproduce the experiments for the entire range of tested conditions. A set of correlations were developed, reproducing the experimental data to within ±5% at a confidence interval of 95%.  相似文献   

7.
《Applied Thermal Engineering》2005,25(2-3):327-340
This study experimentally examines the air-side performance of a total of 10 cross flow heat exchangers having crimped spiral configurations under the dehumidification. The effect of tube diameter, fin spacing, fin height, transverse tube pitch, and tube arrangements are examined. The results indicate that the heat transfer coefficient of wet surface is slightly lower than that of dry surface. The effect of tube diameter on the air-side performance is significant. Larger tube diameter not only gives rise to lower heat transfer coefficient but also contributes significantly to the increase of pressure drops. This phenomenon is applicable in both dry and wet condition. For wet surface, the influence of fin height is negligible and the effect of fin spacing on the heat transfer performance is rather small. However, increasing of the fin spacing tends to have a lower heat transfer coefficient. The tube arrangement plays an importance role on the heat transfer coefficient, narrower transverse pitch gives higher heat transfer coefficient. The proposed correlations can predict 75% and 95% of experimental data within 15%.  相似文献   

8.
A latent heat thermal energy storage system using a phase change material (PCM) is an efficient way of storing or releasing a large amount of heat during melting or solidification. It has been determined that the shell‐and‐tube type heat exchanger is the most promising device as a latent heat system that requires high efficiency for a minimum volume. In this type of heat exchanger, the PCM fills the annular shell space around the finned tube while the heat transfer fluid flows within the tube. One of the methods used for increasing the rate of energy storage is to increase the heat transfer surface area by employing finned surfaces. In this study, energy storage by phase change around a radially finned tube is investigated numerically and experimentally. The solution of the system consists of the solving governing equations for the heat transfer fluid (HTF), pipe wall and phase change material. Numerical simulations are performed to investigate the effect of several fin parameters (fin spacing and fin diameter) and flow parameter (Re number and inlet temperature of HTF) and compare with experimental results. The effect of each variable on energy storage and amount of solidification are presented graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
张丽蓉  解国珍  刘焕志  李晓伟 《节能》2010,29(12):21-23
扩展传热面是提高单位体积内传热面积最常用的方法。以空气为介质,对三种给定的肋片管束(H型、纵肋肋片、螺旋肋片)进行了顺列和错列的换热和流动阻力实验。实验结果表明:错列布置的管束换热效果优于顺列布置的管束,但流动阻力相应增加;错列布置时,综合考虑换热和阻力因素,螺旋肋片管有较好的换热经济性。通过对实验数据进行拟合回归,得出了实验条件下各肋片管束顺列、错列布置的换热关联式。为肋片管束的工程应用、优化选取及进一步的实验研究提供了理论依据。  相似文献   

10.
The heat transfer enhancement performance of a phase change buried tubes thermal storage system is influenced by major parameters such as arrangement of heat transfer tubes, fin structure and fin geometry size. We developed a three-dimensional numerical model with two different arrangements and five different enhanced heat transfer structures respectively. For the sake of analysis the effects of arrangement of heat transfer tubes, fin structure and fin geometry size. In addition, we applied the enthalpy-transforming model to obtain the liquid fraction and location of the solid-liquid interface at different time in the phase change process. The numerical results show that the melting time of the thermal storage system model with a triangle arrangement is about 6.1% longer than that of the model with a square arrangement. Besides, the melting time of the model with 55 mm tube pitch is about 16.7% shorter than that of tube pitch with 60 mm. Moreover, the buried tube thermal storage system models with circle fins have the shortest melting time, which is 18 seconds. Melting time of the model with circle fins is about 40% shorter than that of the model with smooth tube. In addition, the melting time of the model with 3 mm fin thickness is 10 seconds, which is the shortest. The model with thicker fins means the shorter time of melting process. Moreover, the melting time of the model with 10.5 mm fin spacing is about 23.5% shorter than that of the model with 12.5 mm fin spacing, which is 13 seconds. In conclusion, the main factor of the melting time is the heat transfer area. It provides a guidance for the design and reconstruction of the type of heat storage structure.  相似文献   

11.
Numerical modeling of the electric field effect on natural convection in the square enclosures with single fin and multiple fins is investigated. The interactions between electric, flow, and temperature fields are analyzed using a computational fluid dynamics technique. The parameters considered are the supplied voltage, Rayleigh number, size of enclosure, electrode arrangement, number of fins, and fin length. It can be concluded that the flow and heat transfer enhancements are the decreasing function of Rayleigh number. Moreover, the heat transfer coefficient is substantially improved by the electric field effect especially at the high number of fins and long fin length. Surprisingly, the maximum average velocity and heat transfer enhancement occur at the different electrode arrangements for the single fin and multiple fins.  相似文献   

12.
针对水平管降膜蒸发器管外液体的成膜情况,采用数值模拟方法,分析了管束排列方式及管间距等结构参数对水平管外液体成膜情况的影响.结果表明:管束布置方式、管间距对顶排管的影响不大,对于顶排管以下的管排来说,叉排方式时的液膜厚度要明显小于顺排方式的液膜厚度;随着管间距的增大,第二根管壁上的液膜厚度逐渐减小.  相似文献   

13.
Conjugate heat transfer in a finned channel with equally spaced fins placed transversely to the flow direction following in-line and staggered arrangements is evaluated. The fins and channel walls are heat-conducting and are fully coupled to a turbulent fluid flow problem. The hydrodynamic and thermal effects of the fin blockage ratio, fin angle, and flow velocity were investigated. The simulations show that the fin arrangement is of paramount importance on the performance of the heat exchanger: the staggered fin configuration provided lower pressure drop and higher heat transfer rate than the in-line fin arrangement for different flow conditions.  相似文献   

14.
This study performs an experimental study of pin fin heat sinks having circular, elliptic, and square cross-section. A total of twelve pin fin heat sinks with inline and staggered arrangements were made and tested. The effect of fin density on the heat transfer performance is examined. For an inline arrangement, the circular pin fin shows an appreciable influence of fin density whereas no effect of fin density is seen for square fin geometry. This is associated with the unique deflection flow pattern accompanied with the inline circular fin configuration. For the staggered arrangement, the heat transfer coefficient increases with the rise of fin density for all the three configurations. The elliptic pin fin shows the lowest pressure drops. For the same surface area at a fixed pumping power, the elliptic pin fin possesses the smallest thermal resistance for the staggered arrangement.  相似文献   

15.
目的探讨房室间隔缺损介入治疗失败后外科手术的原因及效果,以提高手术成功率。方法选择2000年1月至2007年12月接受经导管介入治疗房间隔缺损(ASD)和室间隔缺损(VSD)失败后,需行外科手术的13例病例进行回顾性分析。外科手术指征为封堵器脱落7例、Ⅲ°房室传导阻滞(AVB)3例、瓣膜关闭不全2例(其中1例同时合并Ⅲ°AVB)、残余漏1例、封堵失败1例。手术均在体外循环下进行,取出封堵器,修复心内畸形,术后入ICU监护。结果ASD介入治疗患者中,手术探查ASD直径平均31mm,较术前诊断的平均26mm增大,两者相比差异有统计学意义(P<0.05)。ASD部位为中央型3例,下腔型6例,与术前诊断符合率为41.7%,不符合率为58.3%(P>0.05)。3例Ⅲ°AVB者术后均恢复窦性心律。心内畸形修复完善,无手术死亡。结论及时采取外科手术治疗介入封堵失败后并发症,效果良好,安全可靠,可避免治疗失败及术后并发症。  相似文献   

16.
Heat transfer coefficients were measured on tube bundles of fundamental layouts including in‐line layouts embedded horizontally in a liquid‐fluidized bed. Tested tube layouts were single tubes, transverse single tube rows, longitudinal single tube rows, and in‐line arranged tube bundles. A total of 7 kinds of particles were used. Comparisons of the experimental data showed a good agreement with the heat transfer correlation developed for staggered layouts, when the average liquid velocity through each tube bundle was used as the reference velocity for the particle Reynolds number. Distribution of the local heat transfer coefficient was also investigated around tubes. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20245  相似文献   

17.
In this study, the effect of holes placed on perforated finned heat exchangers on convective heat transfer was experimentally investigated. Six-millimeter-diameter holes were opened on each circular fin on a heating tube in order to increase convective heat transfer. These holes were placed on the circular fins in such a way as to follow each other at the same chosen angle. The holes created turbulence in a region near the heating tube surface on the bottom of the fin. Experiments were then performed to analyze the effect of this turbulence on heat transfer and pressure drop. These experiments were carried out at five different fin spacings at the angular locations of 30° and 60° in order to determine the optimum fin spacing. Moreover, further experiments were carried out for counterflow and parallel-flow arrangements to determine the effects of the flow directions of the heating fluid and heated fluid. Results show an increase in Nusselt number with increasing modified Reynolds number. In addition, when different fin spacing to heating tube external diameter ratios were examined, at a ratio of 0.414 and angular locations of 30° and 60°, 11% and 8.6% increase in heat transfer were obtained, respectively, for parallel-flow arrangement compared to counterflow. For parallel flow, pressure drop values were 3.5% and 3.8% lower at 30° and 60°, respectively.  相似文献   

18.
In this numerical investigation, three‐dimensional analysis has been used to study the effect of finned channels configuration of (circular, square, and triangular shape) and fin spacing with four rows in staggered arrangements. The finite volume method with k‐ ω turbulent model is applied to estimate the heat transfer and flow characteristics. The results illustrate that the development of the boundary layer between the fins surfaces is credited to the finned channels configuration, fin spacing, and Reynolds number. Moreover, the results of pressure drop and heat transfer with various channel configuration and different fin spacings (1.6, 2, and 4 mm) are presented and validated with the available correlations. The triangular‐finned channel with 1.6 mm fin spacing offered higher heat transfer enhancement followed by square‐ and circular‐finned channels. A considerable agreement was observed when the current findings and the existing correlations were compared, with a maximum deviation of 15% for all the cases.  相似文献   

19.
针对叶片尾缘内部柱肋冷却方式进行数值仿真和优化分析。采用CFX软件进行数值仿真计算,建立圆形柱肋、水滴形柱肋和正方形柱肋3种柱肋形状下,不同柱肋间距的矩形通道模型,验证数值模型的正确性以及网格无关性。分析了顺排和叉排的排列方式下,柱肋形状和柱肋间距对下底面努塞尔数以及整个通道内压力损失的影响,最后通过MATLAB的遗传算法对仿真结果进行优化。研究表明:柱肋模型中,横向和纵向柱肋间距最小时,换热效果最佳,压力损失最大;在顺排和叉排中,正方形柱肋对通道的换热强度的提升效果最明显,圆形柱肋提升效果最小。  相似文献   

20.
In order to elucidate boiling heat transfer characteristics for each tube and the critical heat flux (CHF) for tube bundles, an experimental investigation of pool and flow boiling of Freon-113 at 0.1 MPa was performed using two typical tube arrangements. A total of fifty heating tubes of 14 mm diameter, equipped with thermocouples and cartridge heaters, were arrayed at pitches of 18.2 and 21.0 mm to simulate both square in-line and equilateral staggered bundles. For the flow boiling tests the same bundles as were used in pool boiling were installed in a vertical rectangular channel, to which the fluid was supplied with an approach velocity varying from 0.022 to 0.22 m/s. It was found in this study that the boiling heat transfer coefficient of each tube in a bundle was higher than that for an isolated single tube in pool boiling. This enhancement increases for tubes at higher locations, but decreases as heat flux is increased. At heat fluxes exceeding certain values, the heat transfer coefficient becomes the same as that for an isolated tube. As the heat flux approaches the CHF, flow pulsations occurred in the pool boiling experiments although the heat transfer coefficient was invariant even under this situation. The approach velocity has an appreciable effect on heat transfer up to a certain level of heat flux. In this range of heat flux, the heat transfer coefficient exceeds the values observed for pool boiling. An additive method with two contributions, i.e., single phase convection and boiling, was used to predict the heat transfer coefficient for bundles. The predicted results showed reasonable agreement with the measured results. The critical heat flux in tube bundles tended to increase as more bubbles were rising through the tube clearance. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(4): 312–325, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号