共查询到20条相似文献,搜索用时 0 毫秒
1.
针对训练汉维机器翻译模型时汉语-维吾尔语平行语料数据稀疏的问题,将汉语预训练语言BERT模型嵌入到汉维神经机器翻译模型中,以提高汉维机器翻译质量。对比不同汉语BERT预训练模型编码信息的嵌入效果,讨论BERT不同隐藏层编码信息对汉维神经机器翻译效果的影响,并提出一种两段式微调BERT策略,通过对比实验总结出将BERT模型应用在汉维神经机器翻译中的最佳方法。在汉维公开数据集上的实验结果显示,通过该方法可使机器双语互译评估值(BLEU)提升1.64,有效提高汉维机器翻译系统的性能。 相似文献
2.
在神经机器翻译中,因词表受限导致的集外词问题很大程度上影响了翻译系统的准确性。对于训练语料较少的资源稀缺型语言的神经机器翻译,这种问题表现得更为严重。近几年,受到外部知识融入的启发,该文在RNNSearch模型基础上,提出了一种融入分类词典的汉越混合网络神经机器翻译集外词处理方法。对于给定的源语言句子,扫描分类词典以确定候选短语句对并标签标记,解码端利用词级组件和短语组件的混合解码网络,很好地生成单词集外词和短语集外词的翻译,从而改善汉越神经机器翻译的性能。在汉越、英越和蒙汉翻译实验上表明,该方法显著提高了准确率,对于资源稀缺型语言的神经机器翻译性能有一定的提升。 相似文献
3.
针对传统跨语言词嵌入方法在汉越等差异较大的低资源语言上对齐效果不佳的问题,提出一种融合词簇对齐约束的汉越跨语言词嵌入方法。通过独立的单语语料训练获取汉越单语词嵌入,使用近义词、同类词和同主题词3种不同类型的关联关系,充分挖掘双语词典中的词簇对齐信息以融入到映射矩阵的训练过程中,使映射矩阵进一步学习到不同语言相近词间具有的一些共性特征及映射关系,根据跨语言映射将两种语言的单语词嵌入映射至同一共享空间中对齐,令具有相同含义的汉语与越南语词嵌入在空间中彼此接近,并利用余弦相似度为空间中每一个未经标注的汉语单词查找对应的越南语翻译构建汉越对齐词对,实现跨语言词嵌入。实验结果表明,与传统有监督及无监督的跨语言词嵌入方法Multi_w2v、Orthogonal、VecMap、Muse相比,该方法能有效提升映射矩阵在非标注词上的泛化性,改善汉越低资源场景下模型对齐效果较差的问题,其在汉越双语词典归纳任务P@1和P@5上的对齐准确率相比最好基线模型提升了2.2个百分点。 相似文献
4.
汉越平行语料库的资源稀缺,很大程度上影响了汉越机器翻译效果.数据增强是提升汉越机器翻译的有效途径,基于双语词典的词汇替换数据增强是当前较为流行的方法.由于汉语-越南语属于低资源语言对,双语词典难以获得,而通过单语词向量获取低频词的同义词较为容易.因此,提出一种基于低频词的同义词替换的数据增强方法.该方法利用小规模的平行... 相似文献
5.
6.
神经机器翻译前沿综述 总被引:3,自引:0,他引:3
机器翻译是指通过计算机将源语言句子翻译到与之语义等价的目标语言句子的过程,是自然语言处理领域的一个重要研究方向。神经机器翻译仅需使用神经网络就能实现从源语言到目标语言的端到端翻译,目前已成为机器翻译研究的主流方向。该文选取了近期神经机器翻译的几个主要研究领域,包括同声传译、多模态机器翻译、非自回归模型、篇章翻译、领域自适应、多语言翻译和模型训练,并对这些领域的前沿研究进展做简要介绍。 相似文献
7.
近年来,深度学习取得了重大突破,融合深度学习技术的神经机器翻译逐渐取代统计机器翻译,成为学术界主流的机器翻译方法。然而,传统的神经机器翻译将源端句子看作一个词序列,没有考虑句子的隐含语义信息,使得翻译结果与源端语义不一致。为了解决这个问题,一些语言学知识如句法、语义等被相继应用于神经机器翻译,并取得了不错的实验效果。语义角色也可用于表达句子语义信息,在神经机器翻译中具有一定的应用价值。文中提出了两种融合句子语义角色信息的神经机器翻译编码模型,一方面,在句子词序列中添加语义角色标签,标记每段词序列在句子中担当的语义角色,语义角色标签与源端词汇共同构成句子词序列;另一方面,通过构建源端句子的语义角色树,获取每个词在该语义角色树中的位置信息,将其作为特征向量与词向量进行拼接,构成含语义角色信息的词向量。在大规模中-英翻译任务上的实验结果表明,相较基准系统,文中提出的两种方法分别在所有测试集上平均提高了0.9和0.72个BLEU点,在其他评测指标如TER(Translation Edit Rate)和RIBES(Rank-based Intuitive Bilingual Evaluation Score)上也有不同程度的性能提升。进一步的实验分析显示,相较基准系统,文中提出的融合语义角色的神经机器翻译编码模型具有更佳的长句翻译效果和翻译充分性。 相似文献
8.
依赖于大规模的平行语料库,神经机器翻译在某些语言对上已经取得了巨大的成功。无监督神经机器翻译UNMT又在一定程度上解决了高质量平行语料库难以获取的问题。最近的研究表明,跨语言模型预训练能够显著提高UNMT的翻译性能,其使用大规模的单语语料库在跨语言场景中对深层次上下文信息进行建模,获得了显著的效果。进一步探究基于跨语言预训练的UNMT,提出了几种改进模型训练的方法,针对在预训练之后UNMT模型参数初始化质量不平衡的问题,提出二次预训练语言模型和利用预训练模型的自注意力机制层优化UNMT模型的上下文注意力机制层2种方法。同时,针对UNMT中反向翻译方法缺乏指导的问题,尝试将Teacher-Student框架融入到UNMT的任务中。实验结果表明,在不同语言对上与基准系统相比,本文的方法最高取得了0.8~2.08个百分点的双语互译评估(BLEU)值的提升。 相似文献
9.
词嵌入作为自然语言处理任务的第一步,其目的是将输入的自然语言文本转换为模型可以处理的数值向量,即词向量,也称词的分布式表示。词向量作为自然语言处理任务的根基,是完成一切自然语言处理任务的前提。然而,国内外针对词嵌入方法的综述文献大多只关注于不同词嵌入方法本身的技术路线,而未能将词嵌入的前置分词方法以及词嵌入方法完整的演变趋势进行分析与概述。以word2vec模型和Transformer模型作为划分点,从生成的词向量是否能够动态地改变其内隐的语义信息来适配输入句子的整体语义这一角度,将词嵌入方法划分为静态词嵌入方法和动态词嵌入方法,并对此展开讨论。同时,针对词嵌入中的分词方法,包括整词切分和子词切分,进行了对比和分析;针对训练词向量所使用的语言模型,从概率语言模型到神经概率语言模型再到如今的深度上下文语言模型的演化,进行了详细列举和阐述;针对预训练语言模型时使用的训练策略进行了总结和探讨。最后,总结词向量质量的评估方法,分析词嵌入方法的当前现状并对其未来发展方向进行展望。 相似文献
10.
针对神经机器翻译中资源稀缺的问题,提出了一种基于双向依存自注意力机制(Bi-Dependency)的依存句法知识融合方法。首先,利用外部解析器对源句子解析得到依存解析数据;然后,将依存解析数据转化为父词位置向量和子词权重矩阵;最后,将依存知识融合到Transformer编码器的多头注意力机制上。利用Bi-Dependency,翻译模型可以同时对父词到子词、子词到父词两个方向的依存信息进行关注。双向翻译的实验结果表明,与Transformer模型相比,在富资源情况下,所提方法在汉-泰翻译上的BLEU值分别提升了1.07和0.86,在汉-英翻译上的BLEU值分别提升了0.79和0.68;在低资源情况下,所提方法在汉-泰翻译上的BLEU值分别提升了0.51和1.06,在汉-英翻译上的BLEU值分别提升了1.04和0.40。可见Bi-Dependency为模型提供了更丰富的依存信息,能够有效提升翻译性能。 相似文献
11.
神经机器翻译为机器翻译提供了一种全新的方法,在多对语言之间的翻译质量上,已超过了统计机器翻译,并逐渐成为当前机器翻译的主流方向。未登录词翻译是神经机器翻译的主要难点之一。为了消解未登录词,一种可行的方案是采用Byte Pair Encoding(BPE)方法。该方法在翻译前将原有的单词拆解为更小粒度的高频子字单元。该文主要探究BPE方法在中英神经机器翻译中的应用,分析BPE方法在多大程度上可以解决中英未登录词翻译缺失的问题。实验表明,与Baseline系统相比,BPE方法获得了1.02 BLEU值的提升,对未登录词的翻译精准度达到了45%,与统计机器翻译系统翻译精准度相似。 相似文献
12.
大规模平行语料库的缺乏是低资源神经机器翻译面临的关键问题之一。提出语言模型蒸馏的神经机器翻译方法,通过单语语言模型对神经机器翻译训练进行正则化,引入语言模型包含的先验知识以提升翻译效果。具体地,借鉴知识蒸馏思想,使用丰富单语数据训练的目标端语言模型(教师模型)构造低资源神经机器翻译模型(学生模型)的正则化因子,让翻译模型学习到语言模型中高度泛化的先验知识。与传统单语语言模型融合参与解码过程不同的是,本文方法中的语言模型只在训练阶段使用,不参与推断阶段,因此能够有效提升解码速度。在第十七届全国机器翻译大会CCMT2021维吾尔语-汉语和藏语-汉语2种民汉低资源翻译数据集上的实验结果表明,相比目前最先进的语言模型融合方法,BLEU提高了1.42%(藏汉方向)~2.11%(汉维方向)。 相似文献
13.
神经机器翻译由于无法完全学习源端单词语义信息,往往造成翻译结果中存在着大量的单词翻译错误。该文提出了一种融入单词翻译用以增强源端信息的神经机器翻译方法。首先使用字典方法找到每个源端单词对应的目标端翻译,然后提出并比较两种不同的方式,用以融合源端单词及其翻译信息: ①Factored 编码器: 单词及其翻译信息直接相加; ②Gated 编码器: 通过门机制控制单词翻译信息的输入。基于目前性能最优的基于自注意力机制的神经机器翻译框架Transformer,在中英翻译任务的实验结果表明,与基准系统相比,该文提出的两种融合源端单词译文的方式均能显著提高翻译性能,BLEU值获得了0.81个点的提升。 相似文献
14.
译文质量估计是机器翻译领域中一个重要的子任务,该任务旨在不依靠参考译文的情况下对机器译文进行质量分析.当前,译文质量估计任务在汉英、英德机器翻译上有较好的表现,技术相对成熟.但是将模型应用到汉-越神经机器翻译中面临较多问题.尤其是译文质量估计模型在汉越平行数据中提取到的语言特征不能够充分地体现汉语与越南语之间的语言特点,加之汉语与越南语之间语序与句法结构也存在明显的差异.针对上述问题,本文采用统计对齐的方法对汉越之间结构差异进行建模,提取汉语与越南语之间的语言差异化特征,以提升汉越译文质量估计的效果.实验结果表明,融入语言差异化特征在汉-越和越-汉两个方向上较基线模型分别提升了0.52个百分点和0.35个百分点. 相似文献
15.
宫昀 《自动化与仪器仪表》2023,(8):257-261+267
神经机器翻译为加深世界交流做出了巨大贡献,它的发展促进了世界化的发展。研究针对基础的Transformer模型存在的问题,对Transformer模型进行改进,进而提出一种组合式神经机器翻译模型。该模型引入ELMo、Mix-BA以及DMAL,优化了机器翻译对单词的表达形式、多头注意力层之间的联系以及句子中重点单词的关注度。研究利用WMT14en-de数据集与IWSLT14de-en数据集进行对比实验,在两种数据集中,组合式神经机器翻译模型的BLEU得分相较于Transformer基线模型分别高出1.07、0.92;在长句翻译中,组合式神经机器翻译模型的BLEU评分达到33.56,并高出LSTM模型5.72。结果表明研究所提出机器翻译模型具有更好的翻译效果,为神经机器翻译的发展提供新的思路。 相似文献
16.
近年来,随着人工智能和深度学习的发展,神经机器翻译在某些高资源语言对上取得了接近人类水平的效果。然而对于低资源语言对如汉语和蒙古语,神经机器翻译的效果并不尽如人意。为了提高蒙汉神经机器翻译的性能,该文基于编码器—解码器神经机器翻译架构,提出一种改善蒙汉神经机器翻译结果的方法。首先将蒙古语和汉语的词向量空间进行对齐并用它来初始化模型的词嵌入层,然后应用联合训练的方式同时训练蒙古语到汉语的翻译和汉语到蒙古语的翻译。并且在翻译的过程中,最后使用蒙古语和汉语的单语语料对模型进行去噪自编码的训练,增强编码器的编码能力和解码器的解码能力。实验结果表明该文所提出方法的效果明显高于基线模型,证明该方法可以提高蒙汉神经机器翻译的性能。 相似文献
17.
由于汉字的多样性和中文语义表达的复杂性,中文拼写检查仍是一项重要且富有挑战性的任务。现有的解决方法通常存在无法深入挖掘文本语义的问题,且在利用汉字独特的相似性特征时往往通过预先建立的外部资源或是启发式规则来学习错误字符与正确字符之间的映射关系。文中提出了一种融合汉字多特征嵌入的端到端中文拼写检查算法模型BFMBERT(BiGRU-Fusion Mask BERT)。该模型首先利用结合混淆集的预训练任务使BERT学习中文拼写错误知识,然后使用双向GRU网络捕获文本中每个字符错误的概率,利用该概率计算汉字语义、拼音和字形特征的融合嵌入表示,最后将这种融合嵌入输入到BERT中的掩码语言模型(Mask Language Model, MLM)以预测正确字符。在SIGHAN 2015基准数据集上对BFMBERT进行了评测,取得了82.2的F1值,其性能优于其他基线模型。 相似文献
18.
神经机器翻译是目前机器翻译领域的主流方法,而翻译记忆是一种帮助专业翻译人员避免重复翻译的工具,其保留之前完成的翻译句对并存储在翻译记忆库中,进而在之后的翻译过程中通过检索去重用这些翻译。该文基于数据扩充提出两种将翻译记忆与神经机器翻译相结合的方法:(1)直接拼接翻译记忆在源语句后面;(2)通过标签向量拼接翻译记忆。该文在中英与英德数据集上进行了实验,实验表明,该方法可以使翻译性能获得显著提升。 相似文献
19.
20.
机器译文自动评价对机器翻译的发展和应用起着重要的促进作用,其一般通过计算机器译文和人工参考译文的相似度来度量机器译文的质量。该文通过跨语种预训练语言模型XLM将源语言句子、机器译文和人工参考译文映射到相同的语义空间,结合分层注意力和内部注意力提取源语言句子与机器译文、机器译文与人工参考译文以及源语言句子与人工参考译文之间的差异特征,并将其融入基于Bi-LSTM神经译文自动评价方法中。在WMT’19译文自动评价数据集上的实验结果表明,融合XLM词语表示的神经机器译文自动评价方法显著提高了其与人工评价的相关性。 相似文献