共查询到17条相似文献,搜索用时 46 毫秒
1.
针对红外目标图像分辨率低,缺少纹理细节,存在复杂背景干扰导致检测精度低的问题,提出一种基于改进YOLOX的红外目标检测算法。首先,设计了一种有效的空间通道混合注意力模块,将其引入在特征提取主干网络CSP-Darknet53中,以减少网络由于远距离传输造成的精度损失;其次,为了进一步提升红外目标的检测精度,在原本加强特征提取网络PANet的基础上提出一种改进的路径特征融合方法;最后,为了解决红外目标中小物体预测精度低的问题,在YOLOX输出检测头处进行反卷积操作扩大输出特征图。在FLIR红外公开数据集上进行实验,实验结果表明,所提算法识别的平均精度均值(mAP)达91.00%,相比于基准YOLOX网络的平均精度提升了5.04个百分点,对于提升红外目标的检测精度是有效的。 相似文献
2.
针对人工巡检及传统视频监测方式不能及时识别输电线路外破隐患的问题,本文提出基于YOLOv4改进的输电线路外破隐患识别算法。该算法通过改进K-means++算法对图片样本集目标的大小进行聚类分析,筛选出符合检测目标特征的锚框,之后利用CSPDarknet-53残差网络提取图片深层次网络特征数据,采用SPP算法对特征图进行处理增加感受野,并引用自注意力机制(CBAM),增强模型的特征提取能力。最后结合实际输电线路现场监控图,测试后表明该算法能够及时准确检测到外破隐患。 相似文献
3.
提出一种基于贝叶斯估计的红外弱小目标检测算法,提高对信噪比极低且进行大机动运动的弱小目标的检测能力.算法的鲁棒性、稳定性、适应性很强.与传统粒子滤波算法相比,该方法能够检测到信噪比更低的运动目标.进行大量的实测实验,结果表明,该算法与其他先进算法相比,在目标信噪比较高的条件下,检测率及虚警率均令人满意.随着目标信噪比逐... 相似文献
4.
机场跑道异物对航班安全起降构成极大威胁,准确及时地检测并清除机场跑道异物是机场安全工作的重点。针对机场跑道异物检测任务中的小目标检测精确度与实时性,提出一种基于YOLOv7的机场跑道异物检测算法。首先在主干网络引入CBAM模块,从空间注意力与和通道注意力两方面专注小目标特征信息提取;其次在加强特征提取网络结合AFPN思想提出SA-PANet结构,将相邻有效特征层进行渐进式特征融合,缓解有效特征层之间的语义差距;然后在加强特征提取网络的PANet结构下采样支路中引入BiFormer模块,聚焦小目标特征信息的进一步融合提取;最后在边界框定位损失函数计算过程中引入MPDIoU Loss,加速模型收敛并提升机场跑道异物检测准确率与定位精度。在机场跑道异物图像数据集上实验表明,改进后算法mAP50为98.76%,较改进前算法提升9.09个百分点。与其他针对机场跑道异物检测的算法相比,改进后算法具有更高的检测精度同时将模型参数量与模型计算量增幅控制在可接受范围内,达到机场跑道异物检测任务的准确、快速需求。 相似文献
5.
针对当前利用RGB-D图像进行目标检测出现的网络融合不充分和检测效率不高等问题,提出一种基于注意力机制的特征逐级融合网络结构.首先在基于Yolo v3的Backbone网络结构下,分别用标注好的RGB-D样本分别训练RGB和Depth网络,然后通过注意力模块增强两种特征,最后在网络中期逐层融合得到最终的特征权重.在具有... 相似文献
6.
为了解决遥感图像中小目标的误检 、漏检难 题 , 提 出 了 一 种 改 进 的 YOLOv7-tiny算 法 。首 先 , 引 入 高 效 多 尺 度 注 意 力模块(efficientmulti-scale attention, EMA) ,基于此设计了多尺度特征提取模块 ELAN-EMA,这大大增强了骨干网 络 对 于 多尺度特征的提取能力 ;其次 ,在 特 征 金 字 塔 网 络(feature pyramid network, FPN) 中 引 入 内 容 感 知 特 征 重 组(content-aware reassembly offeatures, CARAFE) 优化最近邻上采样方法 ,设计了 FPN-CARAFE结构 ,扩大了感受野 ,从而能够获取小 目标 更多的细节信息和丰富的语义信息 ;最后 ,采用归一化距离损失函数(normalized wasserstein distance, NWD) 优化 CIoU 损失 函数 ,设计了 NWD-CIoU损失函数 , 降低了 CIoU对小目标位置偏 移 的 敏 感 性 , 能 够 更 好 地 提 升 小 目 标 的 检 测 效 果 。在 公 开 的遥感数据集 RSOD和 NWPU VHR-10上进行的实验表明 ,与基准模型相比 ,在计算量和参数量略增长的情况下 ,改进的模 型在平均精度均值(mAP) mAP@0.5 上分别提升了 3.6%和 1.8% ,有 效 地 提 高 了 遥 感 图 像 中 小 目 标 的 检 测 精 度 ,综 合 性 能 优于其他算法 ,满足部署在遥感检测系统上的要求 。 相似文献
7.
密集场景下小目标的高效精确检测是目标检测领域的关键问题。为了解决环境的多样性和小目标自身复杂性存在着特征难以提取、检测精度低等问题,提出一种面向密集场景结合TC YOLOX的小目标检测方法。首先,通过在CSPNet中引入Transformer Encode模块,不断更新目标权重实现增强目标特征信息,提高网络的特征提取能力;其次,在特征金字塔网络中增加卷积注意力机制模块,关注重要特征并抑制不必要特征,提高不同尺度目标的检测准确度;然后,采用CIoU代替IoU作为回归损失函数,使得模型训练过程中网络收敛更快,性能更好;最后在PASCAL VOC 2007数据集上验证。实验结果表明,所设计的TC YOLOX模型能够有效的检测出多样化场景中正常、密集、稀疏、黑暗条件下的小目标物体,mAP和检测速度可以达到946%和38 fps,与原始模型相比提升了109%和1 fps,对多种密集场景下的小目标检测任务均具有较好的适用性。 相似文献
8.
在军事侦察中,部署了大量的光电侦察设备,搜集了众多视频信息.随着科技的进步,探测器阵列增加,数据量越来越庞大.若无法实现视频的自动分析,人工作业,很难充分分析海量的视频数据.因此,迫切需要研究快速、自动和鲁棒方法以检测感兴趣目标.提出一种新的红外小目标检测方法,通过时空域分析、高阶矩异常检测,在视频中提取弱小目标.对图... 相似文献
9.
10.
11.
使用无人机采集的航拍图中存在背景复杂、目标密集、目标重叠等诸多问题,这都对现有的目标检测网络提出了挑战。以YOLOv5为基础进行改进,修改原有的BackBone网络,嵌入改进后的单聚合(OSA)模块,解决因为网络深度造成的梯度衰减问题;针对原网络结构对小目标的定位不准确,获得的信息不充分问题,增加一个160×160的小目标检测层应对小目标难以检测问题,同时修改特征融合网络丰富语义信息;最后改进原有的损失函数CIoU,长宽不再是一个统一的整体计算损失,而是分开优化,提高预测方框的准确度。算法在VisDrone2019无人机航拍数据集上实验结果表明,平均精度均值(mAP)与原算法相比提升了5.2%,检测帧率达到了45 fps,训练模型大小为18.9 MB。 相似文献
12.
为使水果采摘机器人在复杂情况下如树叶遮挡、果实目标尺度变化大等情况能准确地检测出水果,提出一种YOLO(you only look once)改进模型与NMS(non-maximum suppression)改进算法的目标检测方法。首先,对传统YOLO深度卷积神经网络架构进行改进,设计一种更细化的SPP5(spatial pyramid pooling)特征融合网络模块,强化特征图多重感受野信息的融合,并基于此模块提出一种YOLOv4-SPP2-5模型,在标准YOLOv4网络中跨层添加并改进SPP层,重新分布池化核大小,增强感受野范围,从而降低目标误检率;其次,提出一种Greedy-Confluence的NMS改进算法,通过对高度接近的检测框直接抑制和对重叠检测框综合考虑距离交并比DIOU(distance-intersection over union)和加权接近度WP(weighted proximity)的方法,均衡NMS的计算消耗并减少检测框的错误抑制,从而提高遮挡、重叠物体的检测精度;最后,分别对改进方法进行性能测试,验证方法的可行性,随后制作水果检测数据集并进行格式转换和标... 相似文献
13.
为解决红外弱小目标检测领域中基于单类先验知识的人类视觉系统检测方法检测准确率低、虚警率高以及显著图计算复杂等问题,提出一种在复杂背景条件下对红外弱小目标多种特性进行融合处理的检测方法。通过融合红外弱小目标的局部灰度值大、自身灰度信息符合二维高斯分布以及与邻域相似度低的三大特性,利用协方差检测和相似度对比计算得到显著图,对显著图进行简单阈值分割得到真实目标。对不同复杂背景和不同数据类型的红外源图像进行弱小目标检测实验,结果表明:与基线算法相比本文所提算法检测结果背景抑制因子和信杂比增益均提高2~3倍,交并比为HVS类方法最优,ROC曲线在较低虚警率时获得最高检测准确率。本文方法将红外源图像中弱小目标多个特性进行有效融合,提高检测精度的同时降低了显著图计算复杂度,在不同复杂背景和杂波干扰的情况下仍能取得较好的目标定位和背景抑制效果。 相似文献
14.
针对石英坩埚气泡检测现有方法实时性差及小目标检测能力不足的问题,提出了一种改进YOLOv5的石英坩埚气泡检测算法YOLOv5-QCB。首先,自建石英坩埚气泡数据集,根据气泡尺寸小且分布密集的特点,减少网络下采样的深度,保留丰富的细节特征信息;同时,在颈部使用空洞卷积以增大特征图感受野,实现全局语义特征的提取;最后,在检测层前添加有效通道注意力机制,增强重要通道特征的表达能力。实验结果表明,相比于原模型,改进后YOLOv5-QCB能有效降低对小气泡的漏检率,平均检测精度从96.27%提升到98.76%,权重缩减了二分之一,能够实现快速、准确检测石英坩埚气泡数量。 相似文献
15.
针对红外微波复合探测的目标识别问题,提出了基于关联信息的多传感器复合探测目标识别方法,通过红外与微波传感器对真实探测目标和虚假干扰目标的回波差异分析,采用关联信息融合的方法提取相应的特征参数进行对比与分析。在此基础上建立了红外微波传感器探测目标识别的数学模型,并分析研究了基于关联信息的红外与微波复合探测目标识别问题,最后通过实验的方式加以验证并得出结论,该种方法在目标探测及识别方面具有较为显著的效果。 相似文献
16.
采用图像视频技术对输电线路通道实时监控,通过智能目标检测算法实现外力破坏隐患目标的识别并预警的方法精确率高,近年来被逐渐普及。但在实际环境中,由于图片背景复杂、天气变化(如雾、雨等)等因素,训练数据无法涵盖所有条件,目标识别算法泛化能力较弱,实际应用中常出现漏报和误报。基于这些问题,采用YOLOv5作为本文算法基础,通过数据扩增模拟不同天气,引用自注意力机制(CBAM)增强模型的特征提取能力,并加入多尺度域自适应网络对训练集进行对抗训练,增强模型对不同天气、不同场景的泛化能力。经实验证明,本文所用算法得到的召回率(Recall)达到了86.9%,较原算法有明显提升,平均准确率(MAP)高于原YOLOv5算法,达到了92.2%,能准确的检测出待检外破目标,减少漏检、误检。 相似文献
17.
路面裂缝是道路最为常见的缺陷,随着深度学习技术的发展,利用深度学习的方法对路面图像中的裂缝信息提取的方法愈来愈多。针对现有深度学习路面裂缝检测方法提取裂缝特征不完整导致精度低以及实时性不足的问题,提出一种融合注意力机制与GhostUNet的路面裂缝检测方法。本方法由编码器和解码器组成,将U-Net中的常规卷积改进为Ghost卷积,减少模型参数量;在编码和解码部分,为了提高对裂缝特征的提取能力,引入ECA注意力机制和残差连接,ECA注意力模块可以过滤不相关的特征信息,利用残差连接可以避免网络退化现象。为评估本方法在裂缝检测方面的有效性,使用两个公开裂缝数据集,并进行消融实验和对比实验,实验结果F1_score、P和R分别比U-Net平均提高了14.48%、14.35%和14.45%;该模型相比U-Net参数量下降了14.2 MB。该模型与同类模型比较,分割的准确率更高,参数量更少。 相似文献