首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a parametric study on mixed convection heat transfer in an inclined arc-shape cavity subjected to a moving lid. The governing equations for the inclined arc-shape cavity were derived with the incorporation of inertia and buoyant force terms and solved by using the finite-volume method and numerical grid generation scheme. The parametric study considered three physical parameters including inclination angle, Reynolds number and Grashof number, and explored the effect of these parameters on the flow field and heat transfer characteristics. Computations were conducted for the Reynolds number ranging from 100 to 1500, Grashof number from 105 to 107 and inclination angle from 150 to 600. The numerical results show that the flow pattern becomes inertia-dominant and the strength of the primary vortex generally increases as the Reynlods number increases. As the Grashof number increases, the strength of the inertial-induced vortex decreases and the strength of the buoyancy-induced vortex increases. The strength of the vortexes decreases with the increasing inclination angle and the buoyancy-induced flow becomes more dominant. The average Nusselt number increases as the Grashof number increases for all the inclination angles studied here. The local friction increases with the increasing inclination angle, and becomes significant as the Grashof number increases.  相似文献   

2.
Flow past a heated horizontal circular cylinder in the vertically upward direction has been experimentally studied using a monochrome schlieren technique. Both free convection ((Gr)1/3Re)=0 and mixed convection ((Gr)1/3Re)=1011, 1055, 1095 and 1133 cases have been studied. The Reynolds number based on the cylinder diameter is set at 102 for the mixed convection, and four heating levels have been utilized with Grashof numbers of Gr=975, 1105, 1240 and 1370. The temperature distribution of the plume, the Strouhal number and the schlieren images have been reported. The vortex shedding frequency decreases with increasing Grashof number and a complete suppression of vortex shedding takes place at Grashof number of 1370. The wake is seen to become visibly narrow during the suppression of vortex shedding. The nondimensional temperature profile inside the plume is a strong function of Grashof number for free convection in comparison to that of mixed convection.  相似文献   

3.
Abstract

An analysis is performed to investigate the linear wave instability of laminar mixed convection flow over an isothermal vertical flat plate, in which the buoyancy force arises solely from the temperature gradients in the fluid. In the stability analysis, the main flow and thermal fields are treated as nonparallel, and are obtained by the local nonsimilarity solution method The eigenvalue problem consisting of the linearized system of coupled differential equations for the velocity and temperature disturbances are solved by a direct Runge-Kutta numerical integration scheme along with a filtering technique to remove the “parasitic errors” inherent in the numerical integration of the disturbance equations. Neutral stability curves and critical Reynolds numbers are presented for a range of buoyancy parameters covering both assisting and opposing flow situations for two representative Prandtl numbers of 0.7 and 7. It is found that the flow becomes more stable as the buoyancy force increases for assisting flow and less stable as the buoyancy force increases for opposing flow. The curve of Grashof number versus Reynolds number that separates the unstable flow region from the stable one is also presented.  相似文献   

4.
Conjugate mixed convection arising from protruding heat generating ribs attached to substrates (printed circuit boards) forming channel walls is numerically studied. The substrates with ribs form a series of vertical parallel plate channels. Assuming identical disposition and heat generation of the ribs on each board, a channel with periodic boundary conditions in the transverse direction is considered for analysis. The governing equations are discretised using a control volume approach on a staggered mesh and a pressure correction method is employed for the pressure–velocity coupling. The solid regions are considered as fluid regions with infinite viscosity and the thermal coupling between the solid and fluid regions is taken into account by the harmonic thermal conductivity method. Parametric studies are performed by varying the heat generation based Grashof number in the range 104–107 and the fan velocity based Reynolds number in the range 0–1500, with air as the working medium. Results are obtained for the velocity and temperature distributions, natural convection induced mass flow rate through the channel, the maximum temperatures in the heat sources and the local Nusselt numbers. The natural convection induced mass flow rate in mixed convection is correlated in terms of the Grashof and Reynolds numbers. In pure natural convection the induced mass flow rate varies as 0.44 power of Grashof number. The maximum dimensionless temperature is correlated in terms of pure natural convection and forced convection inlet velocity asymptotes. For the parameter values considered, the heat transferred to the working fluid via substrate heat conduction is found to account for 41–47% of the heat removal from the ribs.  相似文献   

5.
The problem of fully developed laminar mixed convection flow in a vertical wavy channel filled with two immiscible viscous fluids is studied analytically. Non‐linear equations governing the motion have been solved by linearization technique, wherein the flow is assumed to be in two parts; a mean part and a perturbed part. Exact solutions are obtained for the mean part and a perturbed part is solved using long wave approximation. Separate solutions are matched at the interface using suitable matching conditions. Numerical results are presented graphically for the distribution of velocity and temperature fields for varying physical parameters such as Grashof number, viscosity ratio, width ratio, and conductivity ratio. The effect of these parameters on the physical characteristics such as Nusselt number and skin friction at the walls is studied. It is found that Grashof number, viscosity ratio, width ratio, and conductivity ratio enhance the velocity parallel to the flow direction. Reversal effect is observed on the velocity which is perpendicular to the flow direction. The Nusselt number remains invariant on Grashof number. As the width ratio decreases, the Nusselt number decreases at the right wall and increases at the left wall and reversal effect is observed for variations of conductivity ratio. The skin friction increases at the left wavy wall and decreases at the right wavy wall as the Grashof number increases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20379  相似文献   

6.
For predicting the fully developed upward flow in a uniformly heated, vertical pipe by taking account of the buoyancy force, the k-ε models of turbulence for low Reynolds number flows were adopted. The regime map for forced, mixed and natural convections as well as for laminar and turbulent flows was plotted from the numerical predictions. At the same time, experiments were carried out at Reynolds numbers of 3000 and 5000, with the Grashof number varying over a wide range, by using pressurized nitrogen gas as a test fluid. In agreement with the prediction, buoyancy-induced impairment of heat transfer was correctly measured in the mixed convection regime. Furthermore, from hot-wire measurements, complete laminarization was demonstrated in the mixed-convection region at a Reynolds number of 3000.  相似文献   

7.
Structures of laminar wakes and heat transfer in the presence of thermal buoyancy art investigated from the numerical solution of complete Navier-Stokes and energy equations in a two-dimensional horizontal channel with a built-in square cylinder. Results show that mixed convection can initiate periodicity and asymmetry in the wake at lower Reynolds numbers than forced convection alone. For a given Reynolds number, the heating of the fluid in the channel is improved by mixed convection up to a certain Grashof number and deteriorates if the Grashof number is further increased.  相似文献   

8.
In the cavity between the co-rotating compressor discs in gas turbine engines, the flow is very complex because of the multiple driving forces including the centrifugal buoyancy force, the Coriolis force and the inertial force. Numerical analysis was carried out in a simple rotating cavity with cooling air axial throughflow and a heated shroud. Efforts were focused upon the flow structure and its variations. The results reveal the non-axisymmetrical flow structures with cyclonic and anti-cyclonic circulations, which slip relative to the rotating cavity in the opposite direction (that is, rotate with a slower speed than the cavity) and the patterns remain unchanged. These structures are not unique, and four types with one, two, three, four pairs of circulations are obtained. For any particular set of conditions, the final structure can depend on the path taken: as axial Reynolds number is increased the number of circulation couples increases, and as Grashof number is increased the number of circulation couples decreases. At high Grashof number, the variation of Nuav with Gr is consistent with the Rayleigh–Bénard convection.  相似文献   

9.
Laminar mixed convection flow of micropolar fluids in a square cavity has been investigated numerically. The flow in the cavity is induced by the combined shear force and buoyancy force resulting from the motion and heating of the upper lid. Parametric studies of the effects of microstructure on the fluid flow and heat transfer in the cavity have been carried out. The flow phenomena are discussed for a range of Grashof number and Reynolds number. Numerical computations are also performed for Newtonian fluid for comparison. The numerical results indicated the strong influence of material parameter, such as vortex viscosity and spin gradient viscosity, on the flow structure and heat transfer.  相似文献   

10.
A numerical study on mixed convection around a hot spherical particle moving vertically downwards in a still fluid medium has been made. The flow field is considered to be axisymmetric for the range of Reynolds number (based on the diameter and the settling velocity of the particle) considered. A third-order accurate upwind scheme is employed to compute the flow field and the temperature distribution. The form of the wake and the thermal field is analyzed for several values of Grashof number and the Reynolds number. The influence of buoyancy on drag and the rate of heat transfer are studied. At moderate Reynolds number, recirculating eddy develops in the downstream of the sphere. With the rise of surface temperature this eddy collapses and the fluid adjacent to the heated surface develops into a buoyant plume above the sphere. The increase in surface temperature of the sphere delays the flow separation. Our results show that the drag force and the rate of heat transfer strongly depend on Grashof number for the moderate values of Reynolds number. The conjugate heat transfer from the moving sphere is also addressed in the present paper. We have compared our computed solution with several empirical and asymptotic expressions available in the literature and found them in good agreement.  相似文献   

11.
In this article, the problem of combined forced and free convection in vertical porous and regular channels for both regular fluids and nanofluids has been solved using the CFD technique in the entrance regions of momentum and heat transfer taking into account the influences of viscous heating and inertial force. In this regard, various types of viscous dissipation models reported in the literature such as the Darcy model, the power of the drag force model, and the clear fluid‐compatible model were applied. In the case of nanofluid flow, both the Brownian and thermophoresis molecular transfer mechanisms were considered. The dimensionless distributions of velocity, temperature, and the volume fraction of nanoparticles were determined in terms of corresponding dimensionless numbers such as the Grashof, Reynolds, Forchheimer, Brinkman, and Darcy numbers. The predicted results were validated using fully‐developed distributions of velocity and temperature. In addition, the influences of the Grashof number value on the temperature and velocity distributions in the entrance and fully‐developed regions were examined carefully. In addition, temperature and velocity distributions of nanofluids and regular fluids in porous and regular channels were compared. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(3): 243–269, 2014; Published online 30 September 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21079  相似文献   

12.
In this study, mixed convection in a vertical channel flow discharging over a horizontal isotherm surface is investigated numerically using a finite difference method based on projection algorithm. The governing equations are discretized by a second order central difference in space and first order in time. The average Nusselt number is calculated on the horizontal surface in various vertical channels of varying areas considering non-dimensional parameters consisting of Reynolds and Richardson (or Grashof) numbers. Analysis of the results shows that there is an optimum gap to have a maximum heat transfer rate over the surface. The optimum gap value varies with Grashof and Reynolds numbers and inlet length of the channel but for high Richardson numbers, Nu has an increasing trend with reduction of gap size. By increasing the Re, Gr and Ri numbers, Nu number increases but in Ri of 0.1 and 0.01 the variations are approximately similar to each other. In addition, a divergent channel is usually more efficient than convergent one concerning heat transfer over the horizontal surface. Effects of Prandtl number and asymmetricity in channel are investigated in detail too.  相似文献   

13.
An exact solution of the Stokes' problem to magnetohydrocynamic for the flow past an infinite vertical oscillating plate, is presented. The induced magnetic field is assumed negligible and the effects of free convection and mass transfer is taken into account. It's observed that the skin friction decreases with increasing Sc (Schmidt number), but increases with increasing Gr (Grashof number) or Gm (Modified Grashof number).  相似文献   

14.
The influence of natural convection on the local and average heat transfer at increasing temperature differences between the jet and the target plate from confined impinging jets has been experimentally and numerically investigated. Local Nusselt numbers were obtained numerically for jet Reynolds numbers in the range of 250–1000, and jet to target spacings of 2, 4, 8, 12 jet diameters at various modified Grashof numbers, to determine the effect of buoyancy induced natural convection. To determine the overall effect of natural convection on the average heat transfer, experiments have been conducted for Re numbers in the range 250–5000 and dimensionless jet to target spacing 2, 4, 6, 8, and 12 at increasing modified Grashof numbers. It has been determined that buoyancy induced natural convection might have opposing or assisting influence on local heat transfer at different locations of the target plate. It has also been shown that especially at low jet inlet velocities the average heat transfer coefficient at the highest modified Grashof number, where the natural convection is effective, is higher than the value corresponding to the lowest Grashof number at which buoyancy effects are negligible, by as much as 37%.  相似文献   

15.
A numerical study has been carried out to analyze the effects of mixed convective flow over a three-dimensional cavity that lies at the bottom of a horizontal channel. The vertical walls of the cavity are isothermal and all other walls are adiabatic. The cavity is assumed to be cubic in geometry and the flow is laminar and incompressible. A direct numerical simulation is undertaken to investigate the flow structure, the heat transfer characteristics and the complex interaction between the induced stream flow at ambient temperature and the buoyancy-induced flow from the heated wall over a wide range of the Grashof number (103–106) and two Reynolds numbers Re = 100 and 1000. The computed thermal and flow fields are displayed and discussed in terms of the velocity fields, streamlines, the temperature distribution and the averaged Nusselt number at the heated and cooled walls. It is found that the flow becomes stable at moderate Grashof number and exhibit a three-dimensional structure, while for both high Reynolds and Grashof numbers the mixed convection effects come into play, push the recirculating zone further upstream and the flow becomes unsteady with Kelvin–Helmholtz instabilities at the shear layer.  相似文献   

16.
The present paper addresses the issue of mixed convection from a small heated sphere in assisting and opposing flow configurations. The sphere is suspended in an electrodynamic chamber (EDC), where it is heated by a focused laser beam up to several hundred degrees above room temperature. As a result, free convection is induced from the sphere, with the Grashof number smaller than 0.02. A vertical forced flow is then applied and gradually increased in a quasi-static manner. The forced flow velocities are in the range 0-0.1 m/s, providing very low particle Reynolds numbers, usually less than 0.5. The effects of the free convection on the drag force experienced by the particle, and of the forced flow on the free convection are assessed quantitatively, measuring continuously the vertical forces experienced by the sphere. A similarity law developed in the previous study is successfully applied to determine the behavior of the drag force at various particle heating levels.  相似文献   

17.
In the present study, the heat transfer from a porous wrapped solid cylinder is considered. The heated cylinder is placed horizontally and is subjected to a uniform cross-flow. The aim is to investigate the heat transfer augmentation through the inclusion of a porous wrapper. The porous layer is of foam material with high porosity and thermal conductivity. The mixed convection is studied for different values of flow parameters such as Reynolds number (based on radius of solid cylinder and stream velocity), Grashof number, permeability and thermal conductivity of the porous material. The optimal value of porous layer thickness for heat transfer augmentation and its dependence on other properties of the porous foam is obtained. The flow field is analyzed through a single domain approach in which the porous layer is considered as a pseudo-fluid and the composite region as a continuum. A pressure correction based iterative algorithm is used for computation. Our results show that a thin porous wrapper of high thermal conductivity can enhance the rate of heat transfer substantially. Periodic vortex shedding is observed from the porous shrouded solid cylinder for high values of Reynolds number. The frequency of oscillation due to vortex shedding is dampened due to the presence of the porous coating. Beyond a critical value of the porous layer thickness, the average rate of heat transfer approaches asymptotically the value corresponding to the case where the heated cylinder is embedded in an unbounded porous medium.  相似文献   

18.
The effect of transverse magnetic field parameter (Hartmann number, Ha), Reynolds number (Re) and Prandtl number (Pr) on the mixed convection flow past a semi-infinite vertical porous plate in a non-Darcian porous medium with variable viscosity and porosity, viscous dissipation and fluid–solid thermal conductivity ratio in the presence of plate transpiration (lateral mass flux) is investigated theoretically and numerically using Keller's implicit finite difference scheme. It is shown that the Hartmann number acts as a retarding force and increases the momentum boundary layer thickness, analogous to the flow against a positive pressure gradient, simultaneously decreasing local skin friction (shear stress). The heat transfer rate is however enhanced by the magnetic field (for positive values of the Eckert number) since the fluid is heated and temperature gradients become reduced between the fluid and the plate, with important potential applications in MHD power generators, materials processing and geothermal systems containing electrically-conducting fluids. The effects of high velocity flow (larger Re) and different Prandtl numbers corresponding to different industrial and geophysical fluids on heat transfer are also discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

This article aims to explore the effects of buoyancy force and thermal boundary condition on the mixed convection heat transfer performance of air in a horizontal microchannel. Three different heat flux models, including bottom wall heated, top wall heated (single wall heating – a novel heating approach compared to recent studies) and both walls heated, are analyzed at four different values of the Grashof number (Gr?=?0, 100, 300, 600) using a lattice Boltzmann method (LBM). The slip velocity boundary condition is also applied to the bottom and top walls. It can be found that the buoyancy force changes the velocity distribution structure near the bottom wall and top wall, particularly at the inlet regions in all models, and a negative slip velocity is generated due to the backflow formed at a relatively large Grashof number and it strictly determines the local wall friction coefficient. Either the bottom wall or the top wall is heated. A vortex is found close to the top wall because the mixing position of the hot and cold fluids is in the vicinity of the top wall. This feature facilitates the heat transfer near the top wall and core flow zone. The thermal performance is most positive for the case when the top wall is heated due to the generation of an induced vortex and no influence of the vortex near the bottom wall.  相似文献   

20.
This article presents a parametric study on flow behavior and heat transfer in an inclined triangular cavity subjected to a moving lid and temperature differential. The systematic study considers three physical parameters (inclination angle, Reynolds number, and Grashof number) and explores the influence of these parameters on flow pattern and heat transfer characteristics. A series of computations were performed for the inclination angle (θ) ranging from 0° to 360° (in increments of 45°), Reynolds number (Re) from 100 to 1,500, and Grashof number (Gr) from 105 to 107. The numerical results show that there are three kinds of flow regime in a triangular cavity inclined from 0° to 360°: buoyancy-dominant, inertia-dominant, and intermediate transition (mixed convection flow). It is interesting that the case with Re = 100, Gr = 107, and θ = 0° exhibits five circulation cells and induces excellent thermal performance, corresponding to wavy profiles in local Nusselt number and local friction factor. The study also reveals that the good thermal performance within a local region can generate higher friction force on the neighboring boundary and this friction force may reduce the strength of the vortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号