首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tensile behavior of CVI SiC/SiC composites with Hi-Nicalon type-S (Hi-NicalonS) or Tyranno-SA3 (SA3) fibers was investigated using minicomposite test specimens. Minicomposites contain a single tow. The mechanical behavior was correlated with microstructural features including tow failure strength and interface characteristics. The Hi-NicalonS fiber-reinforced minicomposites exhibited a conventional damage-tolerant response, comparable to that observed on composites reinforced by untreated Nicalon or Hi-Nicalon fibers and possessing weak fiber/matrix interfaces. The SA3 fiber-reinforced minicomposites exhibited larger interfacial shear stresses and erratic behavior depending on the fiber PyC coating thickness. Differences in the mechanical behavior were related to differences in the fiber surface roughness.  相似文献   

2.
Fiber coatings based on BN, BN/SiC and BN/Si3N4 were deposited on Hi Nicalon type S SiC fibers. The coating parameters were optimized using a design of experiments study. With optimized parameter sets, the coatings exhibited a high degree of coverage on the fibers and almost no fiber bridging could be observed. The coated fiber bundles are flexible and can be processed further by techniques such as filament winding. In comparison to a non-processed reference sample, the maximum tensile load of the fiber bundles with BN, BN/SiC and BN/Si3N4 coatings was reduced by only 5 %, 13 % and 10 %, respectively. The coated fiber bundles retained their tensile strength after thermal annealing up to 1650 °C in a nitrogen atmosphere for 0.5 h. SiCf/SiC samples with BN/SiC fiber coatings exhibited higher values of bending strength and strain-to-failure as a reference sample without fiber coating indicating the functionality of the fiber coatings.  相似文献   

3.
Fatigue behavior of four ceramic-matrix composites (CMCs) was documented at 1000°C, and a fifth composite was documented at 1200°C. Additional fatigue specimens were cycled for set blocks of cycles, removed from the fatigue machine, and exposed in a cyclic corrosion tester for 24 h with a fog of deionized water and a fog of deionized water containing 0.05 wt% NaCl. BN-fiber-coated Nicalon™/SiNC and Nicalon/Al2O3 experienced a pronounced decrease in fatigue life (∼86%) with salt fog exposure. Nicalon/C experienced rapid loss of the SiC exterior seal coat and a 30% decrease in life with salt fog exposure. Nextel610/AS and Nextel720/Al2O3 demonstrated no loss in fatigue performance or retained strength with water or salt fog exposure. Changes to the constituents of Nicalon/SiNC were evaluated to determine if they influenced moisture sensitivity. BN fiber coatings, BN or BN/SiC, alternate matrix prepreg, and matrix filler type had no influence on improving moisture resistance. Direct exposure to moisture fog produced accelerated rates of degradation in the BN fiber coating and greatly decreased fatigue durability.  相似文献   

4.
Three SiC/BN/SiC composite specimens reinforced with different SiC fibers (Sylramic, Sylramic‐iBN, and Hi‐Nicalon Type S) were exposed in a combustion environment. Exposures were carried out for 151 h in a fuel‐lean high pressure burner rig at 0.9 MPa total pressure, sample temperatures near 1573 K, and a gas velocity of 15 m/s. Weight loss of all three composites was observed. Extensive oxidation of SiC fibers was observed in cracked locations. A mechanism based on borosilicate enhanced oxidation coupled with volatilization of boria is described. Ramifications of this degradation mechanism are discussed for long‐term applications of SiC/BN/SiC composites in combustion environments.  相似文献   

5.
Silicon carbide (SiC) fiber‐reinforced SiC matrix composites are inherently multifunctional materials. In addition to their primary function as a structural material, the electric properties of the SiC/SiC composites could be used for the sensing and monitoring of in situ damage nucleation and evolution. To detect damage and use that information to further predict the useful life of a particular component, it is necessary to establish the relationship between damage and electrical resistance change. Here, two typical SiC/SiC composites, melt infiltrated (MI), and chemical vapor infiltrated (CVI) woven SiC/SiC composites, were tested to establish the relationship between the electrical response and mechanical damage in unload–reload tensile hysteresis tests. Compared to the 55% resistance increase seen for CVI composites, the MI SiC/SiC composites exhibit a maximum resistance change in 450% in response to mechanical loading (damage), which is the highest sensitivity known among various composites. An analytic model accounting for fiber breakage and matrix cracks was developed to link the electrical resistance to mechanical damage in the composites. The predictions from the models agree well with the experimental data for both composites with high and low conductive matrices. The residual resistance change after unloading is also correlated to the loading history by the analytical relationship. This study demonstrates that resistance change is sensitive to damage in a predictable manner and can be used to improve the reliability of damage assessment of SiC/SiC composites.  相似文献   

6.
This study examined the rupture mechanisms of an orthogonal 3D woven SiC fiber/BN interface/SiC matrix composite under combination of constant and cyclic tensile loading at elevated temperature in air. Monotonic tensile testing, constant tensile load testing, and tension–tension fatigue testing were conducted at 1100 °C. A rectangular waveform was used for fatigue testing to assess effects of unloading on the damage and failure behavior. Microscopic observation and single-fiber push-out tests were conducted to reveal the rupture mechanisms. Results show that both oxidative matrix crack propagation attributable to oxidation of the fiber–matrix interface and the decrease in the interfacial shear stress (IFSS) at the fiber–matrix interface significantly affect the lifetime of the SiC/SiC composites. A rupture strength degradation model was proposed using the combination of the oxidative matrix crack growth model and the IFSS degradation model. The prediction roughly agreed with the experimentally obtained results.  相似文献   

7.
Boron nitride (BN) matrix composites reinforced by a number of different ceramic fibers have been prepared using a low-viscosity, borazine oligomer which converts in very high yield to a stable BN matrix when heated to 1200°C. Fibers including Nicalon (SiC), FP (A12O3), Sumica and Nextel 440 (Al2O3-SiO2) were evaluated. The Nicalon/BN and Sumica/BN composites displayed good flexural strengths of 380 and 420 MPa, respectively, and modulus values in both cases of 80 GPa. On the other hand, FP/BN and Nextel/BN composites exhibited very brittle behavior. Nicalon fiber with a carbon coating as a buffer barrier improved the strength by 30%, with a large amount of fiber pullout from the BN matrix. In all cases except for Nicalon, the composites showed low dielectric constant and loss.  相似文献   

8.
The effects of cyclic frequency on the fatigue behavior of silicon carbide (Nicalon) fiber-reinforced glass–ceramic matrix (SiC/magnesium aluminosilicate (MAS)) were investigated. Tension–tension fatigue tests were conducted at two frequencies, 10 and 900 Hz, to establish stress versus cycles to failure ( S–N ) relationships. Cycles to failure at a given stress level decreased with an increase of the applied frequency. Analysis of damage mechanisms suggests that there was an enhancement of fiber/matrix interfacial bonding at the higher frequency due to the formation of SiO2 from the reaction of oxygen species of the matrix with SiC of the fiber.  相似文献   

9.
The mechanical behavior of three CVT-processed 2D woven SiC/BN/SiC composite materials with different initial BN interphase thicknesses has been investigated by means of tensile and impact tests. The results have established the efficiency of a BN interphase in promoting a nonlinear/non–catastrophic tensile behavior and high impact resistance. The effect of the initial BN interphase thickness on the resulting mechanical behavior has also been demonstrated. Characterization of the fiber/matrix interfacial zones by AES and TEM has revealed the presence of a SiO2/C double layer at the BN/fiber interface, which might result from a decomposition undergone by the Si–C(O) Nicalon fiber during processing. It has been suggested that the influence of the initial BN interphase thickness on the mechanical properties of the composites results from both changes occurring in the composition and morphology of the interfacial zones and modifications of the interfacial forces due to accommodation of the radial residual clamping stress.  相似文献   

10.
Carbon nanotube‐reinforced silicon carbide composites (CNT/SiC) produced by direct infiltration of matrix into a porous CNT arrays have been demonstrated to possess a unique microstructure and excellent micro‐mechanical properties. However, the thickness of the array preforms is usually very small, typically less than 2 mm. Therefore, fabrication of macroscopic CNT/SiC composites by chemical vapor infiltration (CVI) process requires that the nanoscale fillers could form macroscopic architectures with an open pore network. Here, this study reports an experimental strategy for the fabrication of SiC matrix composites reinforced by CNT based on an ice‐segregation‐induced self‐assembly (ISISA) technique. Macroscopic CNT aerogel with well‐defined macroporous network was produced by ISISA technique and was subsequently infiltrated by SiC in a CVI reactor. After five CVI cycles, the porosity of as‐fabricated composites was 11.6±0.3% and the machined specimens exhibited lamellar structure with parallel lamellaes intersected at discrete angles. By observed, there are in fact five different representative anisotropic macrostructures, the compressive strengths of these five different loading modes with respect to lamella orientation were 933±55, 619±34, 200±45, 199±21, and 297±41 MPa, respectively, and the failure mechanisms were attributed to the anisotropic nature of the macrostructures. Energy dissipation toughening mechanism at the nanoscale such as CNT pull‐out was observed and the phase composition of the fabricated materials included β‐SiC, CNT, and SiO2.  相似文献   

11.
The BN interphase of SiC fiber-reinforced SiC matrix (SiCf/SiC) composites was fabricated by dip-coating process with boric acid and urea as precursor. The results show that the tensile strength of SiC fiber decreases about 30% after BN coating treatment, but the BN coating has little influence on the electrical resistivity of SiC fiber. Compared with the as-received SiCf/SiC composites, the SiCf/SiC composites with BN interphase exhibit a toughened fracture behavior, and the flexural strength is about 2 times that of the as-received SiCf/SiC composites. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably. Owing to the close dielectric properties between SiC and BN, the complex permittivity of SiCf/SiC composites with and without the BN interphase is similar.  相似文献   

12.
A fine study of the interfacial part in the silicon carbide fiber (SiCf) reinforced silicon carbide (SiC) composites was conducted by transmission electron microscopy. The boron nitride (BN) and carbon nanotubes (CNTs) were progressively coated on the SiCf by chemical vapor deposition method to form a hierarchical structure. Three composites with different interfaces, SiCf–CNTs/SiC, SiCf@BN/SiC, and SiCf@BN–CNTs/SiC, were fabricated by polymer infiltration and pyrolysis method. The interfaces and microstructures of the three composites were carefully characterized to investigate the improvement mechanism of strength and toughness. The results showed that BN could protect the surface of SiCf from corrosion and oxidation so that improved the possibility of debonding and pullout. CNTs could avoid the propagation of cracks in the composites so that improved the damage resistance of the matrix. The synergistic reinforcement brought by BN and CNTs interfaces made the SiCf@BN–CNTs/SiC composites with a tensile fracture strength as high as 359 MPa, with an improvement of 23% compared to that of SiCf@BN/SiC.  相似文献   

13.
The nonbrittle fracture of composites consisting of ex polycarbosilane SiC (Nicalon) fibers in a SiC matrix prepared by chemical vapor infiltration is strongly dependent on the presence of a pyrocarbon layer at the fiber/matrix interface (Nicalon/C/SiC composites). The mechanical properties of such materials are known to be influenced by oxidation reactions. Elastic modulus measurements, using ultrasonic wave propagation in the "long bar" mode, have been used to show the influence of the environmental parameters temperature, atmosphere, and pressure on the mechanical behavior of bidirectional Nicalon/C/SiC. In situ , measurements of elastic modulus performed in parallel with thermogravimetric analysis allow examination of oxidation mechanisms which affect interfacial properties. Results showed the modulus to be affected by two interfacial oxidation mechanisms: (1) oxidation of pyrocarbon coating and (2) closure of the resulting interphase gap by silica formation.  相似文献   

14.
Unidirectional (UD) silicon carbide (SiC) fiber-reinforced SiC matrix (UD SiCf/SiC) composites with CVI BN interphase were fabricated by polymer infiltration-pyrolysis (PIP) process. The effects of the anisotropic distribution of SiC fibers on the mechanical properties, thermophysical properties and electromagnetic properties of UD SiCf/SiC composites in different directions were studied. In the direction parallel to the axial direction of SiC fibers, SiC fibers bear the load and BN interphase ensures the interface debonding, so the flexural strength and the fracture toughness of the UD SiCf/SiC composites are 813.0 ± 32.4 MPa and 26.1 ± 2.9 MPa·m1/2, respectively. In the direction perpendicular to the axial direction of SiC fibers, SiC fibers cannot bear the load and the low interfacial bonding strengths between SiC fiber/BN interphase (F/I) and BN interphase/SiC matrix (I/M) both decrease the matrix cracking stress, so the corresponding values are 36.6 ± 6.9 MPa and 0.9 ± 0.5 MPa?m1/2, respectively. The thermal expansion behaviors of UD SiCf/SiC composites are similar to those of SiC fibers in the direction parallel to the axial direction of SiC fibers, and are similiar to those of SiC matrix in the direction perpendicular to the axial direction of SiC fibers. The total electromagnetic shielding effectiveness (EM SET) of UD SiCf/SiC composites attains 32 dB and 29 dB when the axial direction of SiC fibers is perpendicular and parallel to the electric field direction, respectively. The difference of conductivity in different directions is the main reason causing the different SET. And the dominant electromagnetic interference (EMI) shielding mechanism is absorption for both studied directions.  相似文献   

15.
Interphase plays an important role in the mechanical behavior of SiC/SiC ceramic-matrix composites (CMCs). In this paper, the microstructure and tensile behavior of multilayered (BN/SiC)n coated SiC fiber and SiC/SiC minicomposites were investigated. The surface roughness of the original SiC fiber and SiC fiber deposited with multilayered (BN/SiC), (BN/SiC)2, and (BN/SiC)4 (BN/SiC)8 interphase was analyzed through the scanning electronic microscope (SEM) and atomic force microscope (AFM) and X-ray diffraction (XRD) analysis. Monotonic tensile experiments were conducted for original SiC fiber, SiC fiber with different multilayered (BN/SiC)n interfaces, and SiC/SiC minicomposites. Considering multiple damage mechanisms, e.g., matrix cracking, interface debonding, and fibers failure, a damage-based micromechanical constitutive model was developed to predict the tensile stress-strain response curves. Multiple damage parameters (e.g., matrix cracking stress, saturation matrix crack stress, tensile strength and failure strain, and composite’s tangent modulus) were used to characterize the tensile damage behavior in SiC/SiC minicomposites. Effects of multilayered interphase on the interface shear stress, fiber characteristic strength, tensile damage and fracture behavior, and strength distribution in SiC/SiC minicomposites were analyzed. The deposited multilayered (BN/SiC)n interphase protected the SiC fiber and increased the interface shear stress, fiber characteristic strength, leading to the higher matrix cracking stress, saturation matrix cracking stress, tensile strength and fracture strain.  相似文献   

16.
刘文川  纪锐 《硅酸盐学报》1995,23(3):336-341
采用碳布层叠然后用化学气相渗方法制备了C/SiC复合材料,这种材料纤维与基体间的界面是决策材料力学行为的重要因素,带有热解碳作为界面层的C/SiC材料,在断裂进表现出大范围的脱粘,纤维与周围的基体不同发生断裂,有大量的纤维拨出,断口类似毛刷,无界央层材料表现为脆性平面断口,裂纹直接通过纤维和基体向前扩展,没有发生脱粘。  相似文献   

17.
SiC/SiC composites prepared by liquid silicon infiltration (LSI) have the advantages of high densification, matrix cracking stress and ultimate tensile strength, but the toughness is usually insufficient. Relieving the residual microstress in fiber and interphase, dissipating crack propagation energy, and improving the crystallization degree of interphase can effectively increase the toughness of the composites. In this work, a special SiC particles and C (SiCP +C) double-cladding layer is designed and prepared via the infiltration of SiCP slurry and chemical vapor infiltration (CVI) of C in the porous SiC/SiC composites prepared by CVI. After LSI, the SiC generated by the reaction of C with molten Si combines with the SiCP to form a layered structure matrix, which can effectually relieve residual microstress in fiber and interphase and dissipate crack propagation energy. The crystallization degree of BN interphase is increased under the effects of C-Si reaction exotherm. The as-received SiC/SiC composites possess a density of 2.64 g/cm3 and a porosity of 6.1%. The flexural strength of the SiC/SiC composites with layered structure matrix and highly crystalline BN interphase is 577 MPa, and the fracture toughness reaches up to 37 MPa·m1/2. The microstructure and properties of four groups of SiC/SiC composites prepared by different processes are also investigated and compared to demonstrate the effectiveness of the SiCP +C double-cladding layer design, which offers a strategy for developing the SiC/SiC composites with high performance.  相似文献   

18.
The carbon fiber reinforced silicon carbide composites were prepared by an isothermal chemical vapour infiltration process. In order to achieve the required density, the carbon fiber preforms in the form of rectangular panels were infiltrated by silicon carbide (SiC) matrix. Prior to the matrix infiltration, a thin coating of boron nitride, as an interphase, was applied on the fiber preform. The test samples were subjected to seal coating of silicon carbide by chemical vapour deposition process. The effect of protective SiC seal coating was examined by testing (3-point bend test) the uncoated and the seal coated samples at different temperatures. Higher value of the flexural strength was observed for the seal coated samples as compared to the uncoated samples, when got tested at high temperature (up to 1400?°C). The detailed analysis of the fractured surfaces of the tested samples was carried out.  相似文献   

19.
BN-nanoparticle-containing SiC-matrix-based composites comprising SiC fibers and lacking a fiber/matrix interface (SiC/BN + SiC composites) were fabricated by spark plasma sintering (SPS) at 1800°C for 10 min under 50 MPa in Ar. The content of added BN nanoparticles was varied from 0 to 50 vol.%. The mechanical properties of the SiC/BN + SiC composites were investigated thoroughly. The SiC/BN + SiC composites with a BN nanoparticle content of 50 vol.%, which had a bulk density of 2.73 g/cm3 and an open porosity of 5.8%, exhibited quasiductile fracture behavior, as indicated by a short nonlinear region and significantly shorter fiber pullouts owing to the relatively high modulus. The composites also exhibited high strength as well as bending, proportional limit stress, and ultimate tensile strength values of 496 ± 13, 251 ± 30, and 301 MPa ± 56 MPa, respectively, under ambient conditions. The SiC fibers with contents of BN nanoparticles above 30 vol.% were not severely damaged during SPS and adhered to the matrix to form a relatively weak fiber/matrix interface.  相似文献   

20.
Pyrolytic carbon (PyC) coating of silicon carbide (SiC) fibers is an important technology that creates quasi-ductility to SiC/SiC composites. Nano-infiltration and transient eutectic-phase (NITE) process is appealing for the fabrication of SiC/SiC composites for use in high temperature system structures. However, the appropriate conditions for the PyC coating of the composites have not been sufficiently tested. In this research, SiC fibers, with several thick PyC coatings prepared using a chemical vapor infiltration continuous furnace, were used in the fabrication of NITE SiC/SiC composites. Three point bending tests of the composites revealed that the thickness of the PyC coating affected the quasi-ductility of the composites. The composites reinforced by 300?nm thick coated SiC fibers showed a brittle fracture behavior; the composites reinforced 500 and 1200?nm thick PyC coated SiC fibers exhibited a better quasi-ductility. Transmission electron microscope research revealed that the surface of the as-coated PyC coating on a SiC fiber was almost smooth, but the interface between the PyC coating and SiC matrix in a NITE SiC/SiC composite was very rough. The thickness of the PyC coating was considered to be reduced maximum 400?nm during the composite fabrication procedure. The interface was possibly damaged during the composite fabrication procedure, and therefore, the thickness of the PyC coating on the SiC fibers should be thicker than 500?nm to ensure quasi-ductility of the NITE SiC/SiC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号