首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leaves of Ligustrum purpurascens are used in a Chinese traditional tea called small‐leaved kudingcha, which is rich in phenylpropanoid glycosides (PPGs) and has many beneficial properties. Two critical exoacting glycoside hydrolase enzymes (glucosidases) involved in carbohydrate digestion are α‐glucosidase and α‐amylase. We investigated the properties of PPGs from L. purpurascens for inhibiting α‐amylase and α‐glucosidase activity in vitro and found IC50 values of 1.02 and 0.73 mg mL?1, respectively. The patterns of inhibiting both α‐amylase and α‐glucosidase were mixed‐inhibition type. Multispectroscopy and molecular docking studies indicated that the interaction between PPGs and α‐amylase and α‐glucosidase altered the conformation of enzymes, with binding at the site close to the active site of enzymes resulting in changed enzyme activity. Our studies may help in the further health use of small‐leaved kudingcha.  相似文献   

2.
Three phytosterols were isolated from Musa spp. flowers for evaluating their capabilities in inhibiting glucosidase and amylase activities and glycation of protein and sugar. The three phytosterols were identified as β‐sitosterol (PS1), 31‐norcyclolaudenone (PS2) and (24R)‐4α, 14α, 4‐trimethyl‐5α‐cholesta‐8, 25(27)‐dien‐3β‐ol (PS3). IC50 values (the concentration of inhibiting 50% of enzyme activity) of PS1, PS2 and PS3 against α‐glucosidase were 283.67, 11.33 and 43.10 μg mL?1, respectively. For inhibition of α‐amylase, the IC50 values of PS1, PS2 and PS3 were 52.55, 76.25 and 532.02 μg mL?1, respectively. PS1 was an uncompetitive inhibitor against α‐amylase with Km at 5.51 μg mL?1, while PS2 and PS3 exhibited a mixed‐type inhibition with Km at 52.36 and 2.49 μg mL?1, respectively. PS1 and PS2 also significantly inhibited the formation of advanced glycation end products (AGEs) in a BSA–fructose model. The results suggest that banana flower could possess the capability in prevention of the diseases associated with abnormal blood sugar and AGEs levels, such as diabetes.  相似文献   

3.
BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disorder characterized by defects in insulin secretion and action, which can lead to damaged blood vessels and nerves. With respect to effective therapeutic approaches to treatment of DM, much effort has being made to investigate potential inhibitors against α‐glucosidase and α‐amylase from natural products. The edible marine brown alga Ecklonia cava has been reported to possess various interesting bioactivities, which are studied here. RESULTS: In this study, five phloroglucinal derivatives were isolated from Ecklonia cava: fucodiphloroethol G ( 1 ), dieckol ( 2 ), 6,6′‐bieckol ( 3 ), 7‐phloroeckol ( 4 ) and phlorofucofuroeckol A ( 5 ); compounds 1, 3 and 4 were obtained from this genus for the first time and with higher yield. The structural elucidation of these derivatives was completely assigned by comprehensive analysis of nuclear magnetic spectral data. The anti‐diabetic activities of these derivatives were also assessed using an enzymatic inhibitory assay against rat intestinal α‐glucosidase and porcine pancreatic α‐amylase. Most of these phlorotannins showed significant inhibitory activities in a dose‐dependent manner, responding to both enzymes, especially compound 2 , with the lowest IC50 values at 10.8 µmol L?1 (α‐glucosidase) and 124.9 µmol L?1 (α‐amylase), respectively. Further study of compound 2 revealed a non‐competitive inhibitory activity against α‐glucosidase using Lineweaver‐Burk plots. CONCLUSION: These results suggested that Ecklonia cava can be used for nutritious, nutraceutical and functional foods in diabetes as well as for related symptoms. Copyright © 2009 Society of Chemical Industry  相似文献   

4.
Grape seeds collected from vinification of various grape varieties were extracted by supercritical CO2 for oil recovery. The defatted residues thus obtained were considered as a re‐utilisable co‐product and assessed for phenolic content, reducing capacity and inhibitory activities against mammalian α‐amylase and α‐glucosidase enzymes. Supercritical CO2 treatment led to higher recovery of anthocyanins. Reducing capacity of phenolic extracts reached up to ~2200 mmolFe(II) kg?1, much higher than that of various natural phenolic sources. The anthocyanin‐rich extracts showed the highest inhibitory effectiveness towards α‐glucosidase (I50 value equal to ~40 μg gallic acid equivalents (GAE)/mL ~ half than acarbose). Inhibitory effectiveness towards α‐amylase activity was similar among grape varieties, with I50 values comparable to that of acarbose and correlated with proanthocyanidin contents. These results could pave the way for an efficient processing of grapes, including cascade processes, namely: winemaking, oil extraction from recovered grape seeds and phenolic extraction from defatted grape seeds as potential cost‐effective nutraceuticals.  相似文献   

5.
The in vitro inhibitory activities of different seed extracts prepared from cranberry bean mutant SA‐05 and its wild‐type variety Hwachia against aldose reductase, α‐glucosidase and α‐amylase were examined. The results indicated that the polyphenolics‐rich extracts obtained using 800 g kg?1 methanol and 500 g kg?1 ethanol demonstrated inhibitory activities against aldose reductase (IC50 of 0.36–0.46 mg mL?1) and α‐glucosidase (IC50 of 1.32–1.94 mg mL?1). The 500 g kg?1 ethanol extracts also showed α‐amylase inhibitory activities (IC50 of 70.11–80.22 μg mL?1). Subsequent extracts, prepared further with NaCl and H2O from precipitates of 800 g kg?1 methanol or 500 g kg?1 ethanol extracts, exhibited potent α‐amylase inhibitory activities (IC50 of 17.68–38.68 μg mL?1). A combination of 500 g kg?1 ethanol extraction plus a subsequent H2O extraction produced highest polyphenolics and α‐amylase inhibitors. The SA‐05 α‐amylase inhibitor extracts showed greater inhibitory activities than that of Hwachia. Thus, cranberry bean mutant SA‐05 is an advantageous choice for producing anti‐hyperglycaemic compounds.  相似文献   

6.
The objectives of this study were to examine varying extraction conditions of Thymus vulgaris L. as related to phenolic content and profiles of the extracts and their antioxidant, antihypertensive and antidiabetic properties. Phenolics were extracted under various conditions pertaining to free and bound phenolics, solvent type and combination of extraction time and temperature, and these extracts were evaluated in terms of their antioxidant activities and inhibitory activities of angiotensin‐converting enzyme (ACE), α‐glucosidase and α‐amylase. The acetone–water solvent mixture (1:1; v/v) produced the extract with the greatest phenolic content, antioxidant activity and inhibitory activities of ACE and α‐glucosidase. The optimal extraction temperature for maximum phenolic content and antioxidant activity associated with methanol extraction was 60 °C, whereas a lower temperature at 40 °C was required to maximise inhibitory activities for ACE, α‐glucosidase and α‐amylase. An inverse relationship was seen between antioxidant and glucosidase inhibitory activities vs. the ACE and α‐amylase inhibitory activities, which suggests the need for extractions to be directed to specific bioactivities of thyme extracts. Generally, the results indicate major differences in phenolic profiles among the tested extraction conditions with thymol as the predominant phenolic seen in most extractions, while gallic acid, rosmarinic acid or diosmin also predominated in other extracts. Extracts with the same predominant phenolic compound and similar phenolic content showed major disparities in their ACE, glucosidase and α‐amylase inhibitory activities, indicating that the major phenolic profiles of thyme extracts may not be necessarily related to the degree of inhibition of ACE, glucosidase and α‐amylase enzymes.  相似文献   

7.
We investigated the influence of an in vitro simulated digestion process on the content of the free α‐dicarbonyl compounds most frequently found in food. A Glyoxal (GO), methylglyoxal (MGO), and diacetyl (DA) aqueous standard mixture and 2 brands of balsamic vinegar were analyzed before and after exposure to digestive enzymes. A strong matrix effect required adoption of validated RP‐HPLC‐DAD standard addition methods. The results showed that the digestive enzymes markedly alter the concentrations of the exogenous free α‐dicarbonyl compounds ingested with food; the extent of such changes varied with the α‐dicarbonyl compound itself and the diet components, which determined important but different food matrix effects also during digestion. The data also indicate that digestion can reduce the bioavailability of the toxic α‐dicarbonyl compounds ingested with food. However, no firm conclusions can be drawn about a putative positive influence of digestion on the toxic potential of dietary α‐dicarbonyl compounds, because their reaction in the presence of digestive enzymes likely gives rise to advanced glycation end products, which are involved in the development of chronic diseases.  相似文献   

8.
Twelve commonly consumed culinary herbs were assessed for their potential effect in mitigating oxidative stress and postprandial hyperglycaemia: River Mint, Vietnamese Mint, Fish Mint, Spearmint, Sweet Basil, Thai Basil, Coriander, Lemon Verbena, Vietnamese Perilla, Rice Patty, Sawtooth and Rosemary. The radical scavenging and reducing antioxidant activity of the herbs were quite variable ranging from 31–652 mg Trolox Equivalent to 35–512 mg Ferrous Equivalent per gram dried leaves, respectively. The herbs were largely inactive against pancreatic α‐amylase, but showed strong inhibitions against yeast α‐glucosidase at 100 μg Gallic Acid Equivalent (GAE) per millilitre. Vietnamese Mint is the most potent herbs with the concentration required for 50% inhibition of activity of 6.9 μg Dried Leaves per millilitre. In addition, Vietnamese Mint was the only herb that produced significant inhibition of rat intestinal α‐glucosidases, reducing activity to 29.6% at 100 μg GAE mL?1 compared with control.  相似文献   

9.
Biological properties of Moroccan propolis have been scarcely studied. In the present work, the total phenols and flavonoids from 21 samples of propolis collected in different places of Morocco or 3 supplied in the market were determined, as well as the in vitro capacity for inhibiting the activities of acetylcholinesterase, α‐glucosidase, α‐amylase, lipoxygenase, tyrosinase, xanthine oxidase and hyaluronidase. The results showed that samples 1 (region Fez‐Boulemane, Sefrou city) (IC50 = 0.065, 0.006, 0.020, 0.050, 0.014 mg mL?1) and 23 (marketed) (IC50 = 0.018, 0.002, 0.046, 0.037, 0.008 mg mL?1) had the best in vitro capacity for inhibiting the α‐amylase, α‐glucosidase, lipoxygenase, tyrosinase and xanthine oxidase activities, respectively. A negative correlation between IC50 values and concentration of phenols, flavones and flavanones was found. These activities corresponded to the generally higher amounts of phenols and flavonoids. In the same region, propolis samples have dissimilar phenol content and enzyme inhibitory activities.  相似文献   

10.
α‐Glucosidase inhibitory activities of the various solvent fractions (n‐hexane, CHCl3, EtOAc, BuOH, and water) of sea cucumber internal organ were investigated. 1,3‐Dipalmitolein (1) and cis‐9‐octadecenoic acid (2) with potent α‐glucosidase inhibitory activity were purified from the n‐hexane fraction of sea cucumber internal organ. IC50 values of compounds 1 and 2 were 4.45 and 14.87 μM against Saccharomyces cerevisiae α‐glucosidase. These compounds mildly inhibited rat‐intestinal α‐glucosidase. In addition, both compounds showed a mixed competitive inhibition against S. cerevisiae α‐glucosidase and were very stable at pH 2 up to 60 min. The KI values of compounds 1 and 2 were 0.48 and 1.24 μM, respectively. Therefore, the internal organ of sea cucumber might be a potential new source of α‐glucosidase inhibitors suitably used for prevention of obesity and diabetes mellitus.  相似文献   

11.
Cold water extract of P. citrinopileatus (CWEPC) was fractioned into 4 fractions, PC‐I (<1 kDa), PC‐II (1‐3.5 kDa), PC‐III (3.5‐10 kDa), and PC‐IV (>10 kDa), by ultrafiltration. The antioxidant activities, the inhibition of pancreatic α‐amylase, intestinal α‐glucosidase, and hypertension‐linked angiotensin converting enzyme (ACE), as well as the contents of polysaccharides, protein, and phenolic compounds of 4 fractions were determined. The results showed that lower MW fractions exerted a higher antioxidant activity, which was correlated to phenolic contents. The high molecular fraction (PC‐IV) exhibited significantly higher inhibitory activity on α‐amylase, α‐glucosidase, and ACE compared to CWEPC and the other 3 lower MW fractions (<10 kDa), which was more related to protein contents. The inhibition capability of CWEPC and PC‐IV on α‐amylase activity was 1/13.4 to 1/2.7 relative to that of acarbose, respectively. Kinetic data revealed that PC‐IV fraction followed a noncompetitive inhibition pattern on α‐glucosidase activity. The study demonstrated that various MW fractions and types of components contribute to different biological functions of P. citrinopileatus and it is protein constituents but not peptides responsible for the hypoglycemic potential of CWEPC.  相似文献   

12.
α‐Amylases catalyze the hydrolysis of internal α‐(1→4) linkages of glucose polymers as their main reaction; however, some α‐amylases catalyze transfer reactions in addition to hydrolysis. It has been observed that those α‐amylases capable of transferring glycoside residues are also those that generate low molecular weight products from their action on starch (i.e. saccharifying α‐amylases). In this paper the product profiles of a liquefying α‐amylase, a cyclomaltodextrin glucanotransferase and both enzymes acting together on starch and maltodextrins are compared. The increase in glucose and maltose concentration, when both enzymes act together, is due to the combined action of the transfer and hydrolytic activity of CGTase and the liquefying α‐amylase, respectively.  相似文献   

13.
To investigate two‐sided functions of tea polyphenols (TP) in antinutrition and energy balance modulation, TP were extracted from Chinese green tea and used to complex porcine pancreas α‐amylase (PPA). Changes of PPA in activity and secondary conformations were analysed. Porcine pancreas α‐amylase was found sensitive to TP treatment. Tea polyphenols exhibited IC50 at 0.41 mg mL?1 against PPA and maximum inhibitory rate (98.17%) at 3.0 mg mL?1. Tea polyphenols inhibition was concluded as noncompetitive pattern based on its unchanged Km value (0.98 mg mL?1) for soluble starch substrate. Tea polyphenols inhibition arose from pH 1.5 to 10.14, covering gastric and intestinal environments inside body. Circular dichroism spectra analysis revealed regular changes of PPA in secondary conformations (increased proportions of α‐helix and β‐sheet) prior to its inactivation at low TP concentrations. Tea polyphenols‐inhibited PPA had distinct double‐negative peaks at 204 nm and 208 nm. Porcine pancreas α‐amylase was inactivated by TP in ways of complexation and modification of secondary conformations.  相似文献   

14.
Breakdown of rice during gastric digestion may be influenced by rice structure, presence of salivary α‐amylase, and hydrolysis by gastric acid. During mastication, saliva is mixed with rice, allowing α‐amylase to begin starch hydrolysis. This hydrolysis may continue in the gastric environment depending on the rate at which gastric acid penetrates into the rice bolus. The objective of this study was to determine the acid uptake into rice boluses with and without α‐amylase in saliva. Two types each of brown and white rice (medium and long grain), were formed into a cylindrical‐shaped bolus. Each bolus was sealed on all sides except one to allow one‐dimensional mass transfer, and incubated by immersion in simulated gastric juice at 37 °C under static conditions. Acidity of the boluses was measured by titration after 1 to 96 h of incubation. Effective diffusivity of the gastric juice through the bolus was estimated using MATLAB. Average acidity values ranged from 0.04 mg HCl/g dry matter (medium grain white rice, no incubation) to 10.01 mg HCl/g dry matter (long‐grain brown rice, 72 h incubation). The rice type, presence of α‐amylase, and incubation time all significantly influenced rice bolus acidity (P < 0.001). Effective diffusivity of gastric juice into the bolus was greater in brown rice than in white rice. These results indicate that starch hydrolysis by α‐amylase may continue in the stomach before the gastric acid penetrates the rice bolus, and the rate of acid uptake will depend on the type of rice consumed.  相似文献   

15.
This paper describes the characterization of an acidophilic and thermostable α‐amylase from Alicyclobacillus sendaiensis NUST. The MW of this enzyme was estimated to be 56 kDa by SDS–PAGE. The enzyme was stable over a range of pH from 2.5 to 5.5 with an optimum around 3.5. Maximum activity of the α‐amylase was observed at pH 3.5 and 85°C in the presence of soluble starch as substrate. The enzyme activity was decreased by Mg2+, Cu2+, Zn2+, Al3+, K+, Li+, Ag+, urea, EDTA, trichloroacetic acid and Tween 60 and inhibited by Hg2+, Ce2+ and SDS, whereas the activity was increased by Mn2+, DTT, and β‐mercaptoethanol. Ca2+and Fe2+ did not affect the enzyme activity.  相似文献   

16.
Polydatin is the main bioactive ingredient in many medicinal plants, such as Hu‐zhang (Polygonum cuspidatum), with many bioactivities. However, its poor aqueous solubility restricts its application in functional food. In this work, 6‐O‐α‐Maltosyl‐β‐cyclodextrin (Malt‐β‐CD), a new kind of β‐CD derivative was used to enhance the aqueous solubility and stability of polydatin by forming the inclusion complex. The phase solubility study showed that polydatin and Malt‐β‐CD could form the complex with the stoichiometric ratio of 1:1. The supermolecular structure of the polydatin/Malt‐β‐CD complex was characterized by ultraviolet–visible spectroscopy (UV), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffractometry (XRD), thermogravimetric/differential scanning calorimetry (TG/DSC), and proton nuclear magnetic resonance (1H‐NMR) spectroscopy. The changes of the characteristic spectral and thermal properties of polydatin suggested that polydatin could entrap inside the cavity of Malt‐β‐CD. Furthermore, to reasonably understand the complexation mode, the supermolecular structure of polydatin/Malt‐β‐CD inclusion complex was postulated by a molecular docking method based on Autodock 4.2.3. It was clearly observed that the ring B of polydatin oriented toward the narrow rim of Malt‐β‐CD with ring A and glucosyl group practically exposed to the wide rim by hydrogen bonding, which was in a good agreement with the spectral data.  相似文献   

17.
The effects of steep regime, nature of alkaline steeping agent, and kilning condition on α‐amylase development were studied for four Nigerian sorghum cultivars. Malt α‐amylase activity was highly significantly (p<.001) influenced by all the four factors as well as their various assortments of interaction. Generally malts from the Local Red (LR) variety produced the highest a‐amylase values, followed by those of SK 5912, Local White and KSV 8 in the above sequence. The presence/absence of air‐rest processes in steep regimes was a significant factor (p<.001) influencing malt α‐amylase response to final warm steeping as well as to the other factors under study. Similarly, the nature of the steeping agent was a very significant determinant of malt α‐amylase response to kilning condition and regime of steeping. Of significant interest was the observation that Ca (OH)2 steeps enhanced malt α‐amylase activity at the higher temperature of kilning. The significantly lower α‐amylase values given under similar conditions by the other alkaline liquors suggest a possible increase in malt thermostability due to steeping in Ca (OH)2. Additionally, the fact that the extent of enhancement of malt α‐amylase activity by Ca (OH)2, at 50°C Kiln temperature, was regime‐dependent, suggests that the latter was an important modulator of sorghum germination physiology.  相似文献   

18.
A Bacillus sp. TS‐23 α‐amylase produced by recombinant Escherichia coli was adsorbed onto raw starch and the adsorbed enzyme was eluted with maltose or maltodextrin in 50 mM Tris/HCl buffer (pH 8.5). The adsorption‐elution procedure resulted in a yield of 53% α‐amylase activity and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS/PAGE) analysis showed that the eluted α‐amylase had a molecular mass of approximately 64 kDa. Raw starch could be used repeatedly in the adsorption‐ elution cycle with good reproducibility. Scanning electron microscopy of the isolated corn starch exhibited a smooth appearance of the granules before adsorption and only a small change in appearance after three adsorption‐elution cycles. These results suggest that the raw starch adsorption‐elution technique has a great potential in the isolation of Bacillus sp. TS‐23 α‐amylase from the culture broth of recombinant E. coli.  相似文献   

19.
Simple sugars like glucose and maltose are found to induce the production of aflatoxin. Since the formation of simple sugars is directly linked to α‐amylase function in fungus, it is considered that the inhibition of this enzyme is an effective approach to control the production of aflatoxins. The action of two indole derivatives such as indoleacetic acid (IAA) and indolebutyric acid (IBA) has been investigated by means of enzyme kinetics, isothermal titration calorimetric and molecular docking analysis. The results suggested that both IAA and IBA can inhibit α‐amylase in a competitive manner.  相似文献   

20.
Ovine whey proteins were fractionated and studied by using different analytical techniques. Anion‐exchange chromatography and reversed‐phase high‐performance liquid chromatography (HPLC) showed the presence of two fractions of β‐lactoglobulin but only one of α‐lactalbumin. Gel permeation and sodium dodecyl sulfate (SDS)‐polyacrylamide gel electrophoresis allowed the calculation of the apparent molecular mass of each component, while HPLC coupled to electrospray ionisation‐mass spectrometry (ESI‐MS) technique, giving the exact molecular masses, demonstrated the presence of two variants A and B of ovine β‐lactoglobulin. Amino acid compositions of the two variants of β‐lactoglobulin differed only in their His and Tyr contents. Circular dichroism spectroscopy profiles showed pH conformation changes of each component. The thermograms of the different whey protein components showed a higher heat resistance of β‐lactoglobulin A compared to β‐lactoglobulin B at pH 2, and indicated high instability of ovine α‐lactalbumin at this pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号