首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monolithic catalysts were prepared by washcoating an alumina sol and then impregnating Cu‐Mn‐Ag mixed oxides onto cordierite substrates. The effects of the preparation parameters including the Ag/Cu/Mn ratio, the total amount of active phase and the loading of washcoat, and the reaction conditions, e.g., the space velocity and the oxygen/toluene ratio on the catalytic performance for the combustion of toluene were investigated. It is shown that the Cu‐Mn‐Ag oxides are very active for the combustion of toluene and that the highest catalytic activity is achieved over a monolithic catalyst containing 14.7 wt % of washcoat and 21.2 wt % of active phase with a Ag/Cu/Mn molar ratio of 13.8/43.1/43.1. It is also seen that the optimum catalyst has a good catalytic stability and exhibits an excellent activity not only at a rather high space velocity but also within a wide range of oxygen/toluene ratios.  相似文献   

2.
Pd/Al2O3 monolithic catalyst of different washcoat thicknesses were prepared by two methods and tested for the activity of hydrogenation of α‐methyl styrene. These catalysts were prepared by two methods; either the palladium was impregnated on γ‐alumina and this Pd/Al2O3 powder was used to prepare the slurry for washcoating (Cat 1) or γ‐alumina washcoating was followed by impregnation of palladium (Cat 2). The effect of slurry concentration, pH of the slurry, and addition of binders on the catalyst properties was investigated. The monolithic catalysts were characterised by determination of metal dispersion, surface area, scanning electron microscopy, and weight loss of washcoat during ultrasonication. Well‐adhered washcoats were obtained with slurry prepared using milled γ‐alumina, whereas the adhesion of the washcoat prepared using Pd/Al2O3 powders was very poor. Addition of binders significantly improved the adhesion of the washcoats prepared from Pd/Al2O3. Metal dispersion for Cat 2 decreased with washcoat loading but did not change with loading for Cat 1. The activity tests were conducted at different washcoat loadings and the productivity of the monolithic catalyst prepared in both methods has been compared.  相似文献   

3.
A novel structured catalyst of binderless micro‐HZSM‐5 zeolite coating was prepared on stainless‐steeled tubes (i.d. 2 mm) through wash coating and vapor‐phase transport (VPT) crystallization method. The subsequent crystallization of amorphous SiO2 binders improved the coatings adhesion tremendously by more than 10 times with the least amount of binders (<20% by weight), attributed to the remarkably enhanced interlock by the formed Mordenite Framework Inverted structure between zeolite particles. Catalytic cracking of supercritical n‐dodecane (500°C, 4 MPa) was used to examine the catalytic performance of the coatings as prepared, indicating that MZC‐V0.2 exhibited a catalytic activity improvement by 8% and a decreased deactivation rate by 48%. The improved catalytic performance may result from its high acid sites amount by incorporating extra‐framework Al into HZSM‐5 framework, and the possible depressing of pore‐mouth deactivation through partial modification of surface acid sites during VPT treatment. This work provides a potential technique to prepare mechanically stable zeolite coatings with high catalytic activity but less binder usage.  相似文献   

4.
Composite materials consisting of ceramic monoliths and carbon nanofibres (CNFs) have been synthesized by catalytic growth of CNFs on the γ-alumina washcoating layer covering the walls of a ceramic monolith. The composites possess a relatively uniform mesoporous layer of CNFs of relatively small diameter. The thin alumina washcoating (ca. 0.1 μm) prevents the CNFs from being trapped inside the alumina pores and hence the CNFs grow freely throughout the washcoating layer to form a uniform layer of CNFs that completely covers the surface of the monolith walls. The growth temperature is found to control the thickness of the CNF layer (2-4 μm), the growth rate of the nanofibres, and the mechanical strength of the resulting CNF-monolith composite. At ideal conditions, a complete adhesion of the CNF layer and higher mechanical strength than the original cordierite monolith can be obtained. The CNF layer has an average pore size of 17 nm with absence of microporosity which renders these monoliths promising candidates for the use as catalyst supports, especially for liquid phase reactions. The CNFs have small diameters (5-30 nm) due to the high dispersion of Ni particles in the growth catalyst and the CNFs exhibit an unusual branched structure.  相似文献   

5.
The synthesis and utilization of mesoporous Cu‐MCM‐41 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol is described in this article. Physicochemical properties of these Cu‐MCM‐41 catalysts have been investigated by N2‐physisorption, X‐ray diffraction, inductively coupled plasma, N2O titration, transmission electron microscopy, temperature programmed reduction, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. It was found that the copper loading significantly influenced the pore structure and copper surface area of the catalyst. High catalytic performance is obtained over a 20Cu‐MCM‐41 catalyst with a full DMO conversion and EG yield of 92% at a LHSV of 3.0 h?1. The catalytic performance of optimized 20Cu‐MCM‐41 catalyst could be attributed to the fine copper dispersion and large copper surface areas. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2530–2539, 2013  相似文献   

6.
Three polystyrene‐supported N‐heterocyclic carbene–silver complexes [PS‐NHC‐Ag(I)] and a polystyrene‐supported N‐heterocyclic carbene–copper complex [PS‐NHC‐Cu(I)] catalyst were synthesized and characterized by elemental analysis, Fourier transform infrared spectroscopy, inductively coupled plasma‐atom emission spectrometer, thermogravimetric analysis and scanning electron micrographs. The catalytic activity of the supported catalysts was investigated for the reaction of propargylic alcohols and carbon dioxide. PS‐NHC‐Cu(I) showed no catalytic activity to the reaction, while PS‐NHC‐Ag(I) showed a considerable high activity and selectivity for the reaction, yielding the corresponding α‐alkylidene cyclic carbonates in high to excellent yields under mild conditions. Most importantly, the supported catalysts could be separated easily from the products and reused up to 15 times without loss of their high catalytic activity, showing excellent stability. The effect of various reaction parameters such as carbon dioxide pressure, temperature, time, and catalyst loading on the reaction was also investigated.  相似文献   

7.
Alumina‐washcoated cordierite monoliths are prepared to investigate the effects of the preparation process factors on the mechanical stability of monolithic catalysts. It is shown that the agent for pretreating substrates, properties of the washcoating solution (solid content, additive, and amount of additive), and washcoating times all have great effects on the washcoat loading and on the washcoat adhesion and cohesion. There is a great possibility of improving the mechanical stability through the optimization of these factors. If multiple washcoating is performed, the two‐time washcoating after calcination is recommended in this case. It is also pointed out that the minor variation of the washcoat loading with monolithic mini‐specimen increases the scatter of the washcoat adhesion and cohesion, resulting from fatigue failure of active material. Furthermore, the previously proposed mechanical failure mechanism is confirmed to be an effective tool to factors analysis of the mechanical stability of cordierite monolithic catalysts. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2765–2773, 2014  相似文献   

8.
When methanol is converted to olefins on a SAPO‐34 catalyst between 350 and 425°C, there is a rapid initial formation of coke, followed by a slower rate of coke deposition. The rate of coke formation decreases with increasing temperature, and with progression through the catalyst bed. The coke completely blocks the internal channels of the SAPO‐34 crystals and subsequently blocks the mesopores (intercrystalline and those of the bentonite). Coke deposition mainly blocks sites of acidic strength above 175 kJ mol−1. The presence of water in the feed lessens coke formation, either by converting Lewis to Brønsted sites or by competing for surface sites with coke precursors. © 1999 Society of Chemical Industry  相似文献   

9.
The influences of binders (alumina, silica sol, kaolin) on the performance of Ni/H-ZSM-5 for hydrodeoxygenation of cyclohexanone were investigated in a fixed-bed reactor. N2 sorption, X-ray diffractions, H2-temperature-programmed reduction, transmission electron microscopy, 27Al MAS NMR, and temperature-programmed desorption of ammonia were used to characterize the catalysts. The obtained results exhibited that porosity and acidity of the catalysts were strongly influenced by the binders. The most outstanding catalytic performance was observed on catalyst with alumina binder, which bears a well-developed pore structure and more acid sites than the others. Thus, alumina was chosen as the optimum binder to Ni/HZSM-5.  相似文献   

10.
The surface‐modified diamond and PET film underwent photopolymerization rapidly with a binder agent to afford coating films of interpenetrating network (IPN) structure. The coating films thus formed exhibit higher tensile strength, thermal stability, and adhesion strength to the PET film. The inert surfaces of pristine diamond (PD) and PET film were modified by different chemicals and procedures to introduce epoxide and methacryloyl groups, respectively, on their surfaces. A coating agent consisting of an epoxide group containing modified diamond (called ED), a binder agent, and photoinitiators was prepared. After applying the coating agent to the substrate (a glass plate or a methacryloyl group containing PET film, MMA‐PET) and degassing under reduced pressure, the thin film of the coating agent was exposed to UV light (λmax; 365 nm) at room temperature to yield a coating film of IPN‐structure. The tensile strength and thermal properties of the ED‐containing free coating film (called free film) increased with the amount of ED embedded, whereas the strength of the PD‐containing free film decreased with the amount of PD embedded. The adhesion strength of the coating film on the MMA‐PET improved significantly by the free radical polymerization of the methacryloyl groups on the MMA‐PET and the acrylate resin in the binder agent. The surface photoreactions of ED and MMA‐PET with the binder agent were confirmed by modeling. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Porous thin‐sheet cobalt–copper–manganese mixed oxides modified microfibrous‐structured ZSM‐5 coating/PSSF catalysts were developed by the papermaking/sintering process, secondary growth process, and incipient wetness impregnating method. Paper‐like sintered stainless steel fibers (PSSF) support with sinter‐locked three‐dimensional networks was built by the papermaking/sintering process, and ZSM‐5 coatings were fabricated on the surface of stainless steel fibers by the secondary growth process. Catalytic combustion performances of isopropanol at different concentrations over the microfibrous‐structured Co–Cu–Mn (1:1:1)/ZSM‐5 coating/PSSF catalysts were measured to obtain kinetics data. The catalytic combustion kinetics was investigated using power–rate law model and Mars–Van Krevelen model. It was found that the Mars–Van Krevelen model provided fairly good fits to the kinetic data. The catalytic combustion reaction occurred by interaction between isopropanol molecule and oxygen‐rich centers of modified microfibrous‐structured ZSM‐5 coating/PSSF catalyst. The reaction activation energies for the reduction and oxidation steps are 60.3 and 57.19 kJ/mol, respectively. © 2014 American Institute of Chemical Engineers AIChE J, 61: 620–630, 2015  相似文献   

12.
Mesoporous nanocrystalline γ‐alumina was prepared by a template‐free sol‐gel method using aluminum ethoxide as precursor. Significant parameters, such as the water/aluminum ethoxide molar ratio, the pH of the solution, and the time and temperature of aging, were optimized by the Taguchi method to obtain γ‐alumina with a high surface area and pore volume. The influences of the main parameters on the catalytic performance of the prepared catalysts were investigated via dehydration of methanol to dimethyl ether in a fixed‐bed reactor. The catalysts were characterized by X‐ray diffraction, N2 adsorption‐desorption, ammonia temperature‐programmed desorption, and scanning electron microscopy techniques. The results show that the aging temperature had a significant influence on the catalyst performance.  相似文献   

13.
Separation of the radioisotope 85Kr from 136Xe is an important target during used nuclear fuel recycling. We report a detailed study on the Kr and Xe adsorption, diffusion, and membrane permeation properties of the silicoaluminophosphate zeolite SAPO‐34. Adsorption and diffusion measurements on SAPO‐34 crystals indicate their potential for use in Kr‐Xe separation membranes, but also highlight competing effects of adsorption and diffusion selectivity. SAPO‐34 membranes are synthesized on α?alumina disk and tubular substrates via steam assisted conversion seeding and hydrothermal growth, and are characterized in detail. Membrane transport measurements reveal that SAPO‐34 membranes can separate Kr from Xe by molecular sieving, with Kr permeabilities around 50 Barrer and mixture selectivity of 25–30 for Kr at ambient or slight sub‐ambient conditions. The membrane transport characteristics are modeled by the Maxwell‐Stefan equations, whose predictions are in very good agreement with experiment and confirm the minimal competing effects of adsorption and diffusion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 761–769, 2017  相似文献   

14.
根据甲醇制烯烃流化床反应一再生工艺对催化剂反应性能、球形度、耐磨强度等的要求,利用流化床喷雾造粒法制备了MTO薄层催化剂。实验研究了进料流率、分子筛组合物与粘结剂质量比、分子筛组合物浓度对薄层生长速率的影响并比较了分别以分子筛和成型催化剂为原料造粒时的薄层生长速率。实验结果表明,当分子筛组合物浓度高、进料流率大时,催化剂涂层生长速率快,表面活性成分负载量大。  相似文献   

15.
针对丙烷脱氢催化剂用氧化铝作为载体时存在的孔结构与表面酸性调节的问题,开发了以海藻酸盐为黏合剂,采用挤出滚圆方法,制备了大孔球形氧化铝颗粒,并以此作为载体负载Pt、Sn活性组分制备了丙烷脱氢催化剂,研究了氧化铝载体煅烧温度对催化剂晶型、孔道结构、表面酸性、H2还原性能与丙烷脱氢性能的影响.实验结果表明:随氧化铝载体煅烧...  相似文献   

16.
The synthesis, characterization, and application of silica‐supported Cu‐Au bimetallic catalysts in selective hydrogenation of cinnamaldehyde are described. The results showed that Cu‐Au/SiO2 bimetallic catalysts were superior to monometallic Cu/SiO2 and Au/SiO2 catalysts under identical conditions. Adding a small amount of gold (6Cu‐1.4Au/SiO2 catalyst) afforded eightfold higher catalytic reaction rate compared to Cu/SiO2 along with the high selectivity (53%, at 55% of conversion) toward cinnamyl alcohol. Characterization techniques such as x‐ray diffraction, H2 temperature‐programmed reduction, ultraviolet‐visible spectroscopy, transmission electron microscopy, Fourier‐transform infrared spectra of chemisorbed CO, and x‐ray photoelectron spectroscopy were employed to understand the origin of the catalytic activity. A key genesis of the high activity of the Cu‐Au/SiO2 catalyst was ascribed to the synergistic effect of Cu and Au species: the Au sites were responsible for the dissociative activation of H2 molecules, and Cu0 and Cu+ sites contributed to the adsorption‐activation of C?C and C?O bond, respectively. A combined tuning of particle dispersion and its surface electronic structure was shown as a consequence of the formation of Au‐Cu alloy nanoparticles, which led to the significantly enhanced synergy. A plausible reaction pathway was proposed based on our results and the literature. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3300–3311, 2014  相似文献   

17.
Different Pt‐based catalyst layers have been prepared and tested in a stacked foil microreactor for CO oxidation and preferential oxidation of CO in presence of hydrogen. The reactions were performed on Pt without support by impregnation of a pre‐oxidized microstructured metal plate, Pt/Al2O3 and Pt/CeO2 based on sol methods as well as Pt/nano‐Al2O3, a combined method of sol‐gel and nanoparticle slurry coating. The ceria based sol‐gel catalyst was much more active for CO oxidation than alumina based sol‐gel catalysts at low temperature. However, total oxidation was only obtained at higher temperature on the alumina based catalysts. The combined method seems to have advantages in terms of less internal mass transfer limitation when trying to increase the catalyst coating thickness based on sol‐gel approaches due to no reduction of CO selectivity up to 300 °C reaction temperature. Experiments on CO oxidation with the Pt/CeO2 catalyst have been conducted in an oxygen supply microreactor to evaluate the catalyst performance under sequential oxygen supply to reaction zone (CO excess).  相似文献   

18.
芳烃精制脱烯烃分子筛催化剂的研究   总被引:1,自引:0,他引:1  
本研究以铝胶、硅铝胶及钛铝胶为粘合剂,以HY分子筛为主要活性组分制备了芳烃脱烯烃分子筛催化剂.采用NH3-TPD、BET、TG和活性评价等方法对催化剂的酸性、脱烯烃活性、失活原因及再生性能进行了研究.结果表明,含有不同粘合剂的HY分子筛催化剂的脱烯烃活性均明显高于工业使用的NC-01颗粒白土催化剂,分子筛催化剂表面具有较多的弱酸中心是其性能良好的重要原因.积碳是分子筛催化剂表面失活的主要原因,经焙烧再生处理后分子筛催化剂仍具有较好的脱烯烃性能.经823 K焙烧的硅铝胶质量分数为20%的分子筛催化剂具有较佳的反应性能.  相似文献   

19.
In this study, Cu‐loaded Santa Barbara amorphous (SBA)‐15 catalysts were synthesized by impregnation method and further used for catalytic wet peroxidation (CWPO) of pyridine from aqueous solution using hydrogen peroxide as oxidant. The synthesized catalysts have been characterized by Brunauer–Emmett–Teller surface area: temperature‐programmed reduction, H2‐chemisorption, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. Characterization results indicate good dispersion of Cu species inside the porous structure of SBA‐15. The effect of various parameters such as Cu loading on SBA‐15, pH, catalyst dose, H2O2 concentration, and temperature have been studied for their effect on CWPO of pyridine. More than 97% pyridine removal and 92% total organic carbon removal was achieved at optimum condition. Cu/SBA‐15 showed stable performance during reuse for six cycles with negligible copper leaching. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2577–2586, 2013  相似文献   

20.
Methanol steam reforming was studied over several catalysts made by deposition of copper and zinc precursors onto nanoparticle alumina. The results were compared to those of a commercially available copper, zinc oxide and alumina catalyst. Temperature programmed reduction, BET surface area measurements, and N2O decomposition were used to characterize the catalyst surfaces. XRD was used to study the bulk structure of the catalysts, and XPS was used to determine the chemical states of the surface species. The nanoparticle-supported catalysts achieved similar conversions as the commercial reference catalyst but at slightly higher temperatures. However, the nanoparticle-supported catalysts also exhibited a significantly lower CO selectivity at a given temperature and space time than the reference catalyst. Furthermore, the turnover frequencies of the nanoparticle-supported catalysts were higher than that of the commercial catalyst, which means that the activity of the surface copper is higher. It was determined that high alumina concentrations ultimately decrease catalytic activity as well as promote undesirable CH2O formation. The lower catalytic activity may be due to strong Cu-Al2O3 interactions, which result in Cu species which are not easily reduced. Furthermore, the acidity of the alumina support appears to promote CH2O formation, which at low Cu concentrations is not reformed to CO2 and H2. The CO levels present in this study are above what can be explained by the reverse water-gas-shift (WGS) reaction. While coking is not a significant deactivation pathway, migration of ZnO to the surface of the catalyst (or of Cu to the bulk of the catalyst) does explain the permanent loss of catalytic activity. Cu2O is present on the spent nanoparticle catalysts and it is likely that the Cu+/Cu0 ratio is of importance both for the catalytic activity and the CO selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号