首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A typical sol - gel process consists of the liquid reaction, the solution gelation, and followed by the dehydration. The surface properties of silica gel such as surface area, pore volumes, and the pore diameter were affected by the manufacturing variables including pH values, gelation and dehydration temperatures. The objective of this study is to determine the optimum preparation conditions to maximize a response of surface area, or minimize its pore diameter. In addition, interactions between process variables were studied and their significance to the surface properties was also weighted. It was found that the surface area of silica gels increased with an increasing amount of NH4OH to a maximum value and then decreased. As a drying temperature kept constant, the surface area and the pore volume increased with an increasing gelation temperature. However, the pore diameter was not influenced by this factor and the pore size was almost uniform at a low NH4OH concentration. For a higher NH4OH concentration, the pore volume and the pore diameter became larger but the surface area became smaller as the gelation temperature increased. By means of the response surface methodology analysis, the optimum processing condition was found to be 0.0155 mole of NH4OH, 80,3°C for gelation temperature, and 63.2°C for the dehydration. As a result the maximum surface area corresponding to the optimum preparation conditions was 818.9 (m2/g) as expected.  相似文献   

2.
考察了反应溶液中碱性添加剂{氨水(NH4OH)、氢氧化钠(NaOH)、碳酸钠(Na2CO3)、碳酸铵[(NH4)2CO3]和四甲基氢氧化铵(TMAOH)}及其浓度对钛硅分子筛(TS-1)催化丙烯环氧化反应性能的影响,并采用紫外拉曼光谱(UV-Raman)与气相色谱(GC)联用原位分析(Raman-GC)碱性添加剂的作用机理。结果表明:反应体系中添加碱性添加剂可有效改善TS-1催化丙烯环氧化反应的选择性。不同碱性添加剂对TS-1催化丙烯环氧化活性和稳定性影响不同,NaOH、Na2CO3和TMAOH的添加造成催化活性和稳定性降低。NH4OH或(NH4)2CO3作为添加剂改善环氧化反应选择性的同时提高了反应稳定性,其中以(NH4)2CO3效果最佳。添加(NH4)2CO3浓度为8.0×10-4mol/L时,TS-1催化丙烯环氧化在固定床反应器上连续运行336h时,X(H2O2)仍保持在90%以上。原位Raman-GC分析发现,反应体系中NH4OH和(NH4)2CO3添加可加快反应活性中间体Ti-OOH(η2)基团的生成,促进反应产物从活性中心快速扩散,从而提高丙烯环氧化反应选择性和稳定性。  相似文献   

3.
刘越  彭轶  李鹏章  侯红勋  彭永臻 《化工学报》2015,66(3):1133-1141
N2O是一种强效的温室气体,而污水生物脱氮过程是N2O产生的一个主要人为来源。在本研究中,向生物处理出水中投加NH+4、NH2OH及NO-2,研究了NO-2对NH+4及NH2OH氧化过程中N2O产生的影响。试验结果表明,NH+4及NH2OH氧化过程的最初30 min内(总反应时间180 min)产生的N2O占总N2O产生量的25%以上。在NH4+或NH2OH氧化完成前的30 min内,N2O的净产生量仅有0.2 mg·L-1。NH2OH的氧化是短程硝化开始阶段产生N2O的途径,此后NH+4或NH2OH氧化为AOB提供还原NO-2电子,引起的反硝化作用是产生N2O的主要途径。在实际生活污水短程硝化试验过程中,由于部分COD的存在,在低氧条件下,可能会出现异养菌的反硝化作用。同时,由于氧气及NO-2对氧化亚氮还原酶(NOS)的抑制,使得在生活污水进行短程硝化时,N2O的净产量比上述出水试验时增加了17%以上,总产量最高达到了11.07 mg·L-1。这一途径对N2O产生的贡献也是不容忽视的。  相似文献   

4.
Long‐term lime pretreatment has proven to increase digestibility of many herbaceous lignocellulose sources; but until this work, its effects had not been evaluated on wood, whose lignin content is higher, and therefore, more recalcitrant to enzymatic hydrolysis. In this study, the mild conditions of long‐term lime pretreatment (1‐atm pressure, temperatures ranging from 25 to 75°C, and reaction times between 1 and 12 weeks, with and without air) were systematically applied to poplar wood available in two batches with different lignin contents. These batches were designated as low‐lignin biomass (LLB) with lignin content of 21.4% and high‐lignin biomass (HLB) with lignin content of 29.1%. Full factorial designs resulted in 79 samples of pretreated poplar that were analyzed for lignin and carbohydrates pretreatment yields, and enzymatic digestibility (15 FPU/g glucan in raw biomass cellulose loading). After aerated lime pretreatment at 65°C for 4 weeks, and subsequent enzymatic hydrolysis, an overall yield of 0.76 g glucan + xylan recovered per gram glucan + xylan in raw biomass was obtained. This is equivalent to an increased poplar wood digestibility of 7.5‐fold compared with untreated biomass. Different batches of the feedstock resulted in different lignin and carbohydrates pretreatment yields; however, overall yields of carbohydrates (combining pretreatment and enzymatic hydrolysis) were similar. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

5.
Ammonium polyacrylate (NH4PA) was introduced into powdered mixtures consisting of anatase-structured TiO2 nanoparticles and silicon alkoxide precursors at the sol level, and the rheological behavior of the mixtures was examined under various solid loadings (φ=0.05–0.13 in volumetric ratios), shear rates (  s−1) and NH4PA concentrations. The alkoxide precursors were mixtures of tetraethyl orthosilicate (TEOS, Si(OC2H5)4), ethyl alcohol (C2H5OH), H2O and HCl in a constant [H2O]/[TEOS] ratio of 11. The nanoparticle–sol mixtures generally exhibited a pseudoplastic flow behavior over the shear-rate regime examined. The NH4PA appeared to serve as an effective surfactant which facilitates the suspension flow by reducing the flow resistance at low NH4PA concentrations. At φ=0.10, a viscosity reduction ca. 85% was found at  s−1 when the NH4PA concentration was held at 2.5 wt.% of the solids. As the NH4PA exceeded a critical level, e.g., [NH4PA]≥3.0 wt.%, the NH4PA acted as a catalyst which quickly turned the TiO2–silica sol mixtures (φ=0.10) into a gelled structure, resulted in a pronounced increase of mixture viscosity. The maximum solids concentration (φm) of the mixtures was experimentally determined from a derivative of relative viscosity, i.e., (1−ηr−1/2)–φ dependence. The estimated φm increased from 0.127 to 0.165 when NH4PA of 0.5 wt.% was introduced into the TiO2–silica sol mixtures.  相似文献   

6.
Combustion synthesis has been applied to LaMnO3 production with a view to boosting its activity towards natural gas combustion by enhancing its specific surface area. With a highly exothermic and self-sustaining reaction, this oxide can be quickly prepared from an aqueous solution of metal nitrates (oxidisers) and urea (fuel).

The favourable conditions for LaMnO3 formation were sought: only fuel-rich mixtures are effective, but carbonaceous deposits are formed when too much urea is used. In the field of operating conditions in which the combustion synthesis reaction takes place, the specific surface areas were not dramatically higher than those obtained with traditional methods; moreover, even short thermal treatments have been found to rapidly deactivate the catalysts by rapid sintering. With a view to tackling these problems, NH4NO3 was chosen as an additive for its low costs, highly exothermic decomposition and because it generates gaseous products only, without altering the proportion of the other elements in the catalysts. With ammonium nitrate, specific area was enhanced from 4 m2/g up to about 20 m2/g. A short thermal treatment at 900 °C partially deactivates also the NH4NO3-derived catalysts. It was found that NH4NO3-boosted mixtures produce materials whose activity, after a similar thermal treatment, behave practically as the perovskites obtained by the “citrates” method.

Combustion synthesis is though rather cheap—in terms of reactants employed—and quick, given that the process requires few minutes at low temperature without successive calcination. However, the main drawback of this method is that hazardous or polluting compounds are emitted during the synthesis (mainly NH3 or NOx).

The MgO introduction, which should act both as a structural promoter and as a sulphur poisoning limiting agent, has proved to be harmful: since MgO does not physically interpose between perovskite grains, it does not offer resistance to deactivation induced by high temperatures.  相似文献   


7.
A study has been made of the hardness of electrodeposited nickel from Ni(CF3COO)2—halide—MeOH bath. It was found that the hardness was affected by the cd, bath temperature, concentration of nickel, and especially by the halide additive in the bath.

The hardness increased with increasing amount of the additives contained in the bath in the order of NH4Cl4Br

The relationship between the composition of the bath and the hardness of the electrodeposited nickel was discussed with reference to the electrodeposition reaction of nickel.  相似文献   


8.
The wood of young poplar grown in short rotation coppices was used as a substrate for enzymatic saccharification. Several pretreatments of the wood, both physical and chemical, including delignification were applied to enhance the polysaccharide conversion into fermentable sugars. Comparing the yields obtained on a delignified material and on alkali treated material pointed out that lignin is not the major obstacle to saccharification. On the other hand, the swelling and dissolution effect of the potent cellulose solvent, N-methyl morpholine N-oxide, on wood brought about a nearly quantitative sugar recovery. This shows the importance of the ultrastructural organization of the plant cell wall over its enzymatic hydrolysis.  相似文献   

9.
The kinetics of the selective catalytic reduction (SCR) of NO by NH3 in the presence of O2 has been studied on a 5.5% Cu-faujasite (Cu-FAU) catalyst. Cu-FAU was composed of cationic and oxocationic Cu species. The SCR was studied in a gas phase-flowing reactor operating at atmospheric pressure. The reaction conditions explored were: 458<TR<513 K, 2503 (ppm) < 4000, 12 (%) < 4. The kinetic orders were 0.8–1 with respect to NO, 0.5–1 with respect to O2, and essentially 0 with respect to NH3. Based on these kinetic partial orders of reactions and elementary chemistry, a wide variety of mechanisms were explored, and different rate laws were derived. The best fit between the measured and calculated rates for the SCR of NO by NH3 was obtained with a rate law derived from a redox Mars and van Krevelen mechanism. The catalytic cycle is described by a sequence of three reactions: (i) CuI is oxidized by O2 to “CuII-oxo”, (ii) “CuII-oxo” reacts with NO to yield “CuII-NxOy”, and (iii) finally “CuII-NxOy” is reduced by NH3 to give N2, H2O, and the regeneration of CuI (closing of the catalytic cycle). The rate constants of the three steps have been determined at 458, 483, and 513 K. It is shown that CuI or “CuII-oxo” species constitute the rate-determining active center.  相似文献   

10.
任永胜  何婷婷  谢娟  蔡超 《化工学报》2018,69(7):2838-2850
采用等温溶解法研究333.15 K体系(K+,NH4+//Cl-,SO42--H2O)和(K+,NH4+//Cl-,SO42--(CH2OH)2-H2O)[w((CH2OH)2)=30%]的固液相平衡关系。测定了平衡溶液的溶解度数据及物化性质,包括密度、黏度、折射率、pH。根据实验数据,绘制了相应的干盐相图、水图及物化性质-组成图。实验中的物化性质(黏度、密度、折射率、pH)随J(2NH4+)的变化呈现相似性规律。实验结果表明:在333.15 K下,体系(K+,NH4+//Cl-,SO42--H2O)和(K+,NH4+//Cl-,SO42--(CH2OH)2-H2O)[w((CH2OH)2)=30%]的相图相似,均含有一个四元共饱和点,四条单变曲线及四个固相结晶区域。这两个体系均为复杂体系,存在(K,NH4)Cl、(NH4,K)Cl、(K,NH42SO4、(NH4,K)2SO4四种固溶体。实验所获数据和结论,可优化以硫酸盐型固体废弃物为硫酸根来源,转化法生产硫酸钾工艺。  相似文献   

11.
夏然  孙莉萍  渠桂荣 《化工进展》2016,35(8):2533-2536
医药中间体2-氟腺嘌呤的合成主要存在3个问题:①使用易爆炸的重氮化反应;②原料成本高;③总收率不高,规模化难度大。这些问题限制了2-氟腺嘌呤的进一步广泛应用。为了解决以上问题,本文以廉价的6-氯嘌呤为原料,先用四氢吡喃基保护6-氯嘌呤9位NH;然后以二氯甲烷为溶剂,在三氟乙酸酐和四丁基硝酸铵体系作用下,以85%的收率得到6-氯-2-硝基-9-吡喃基嘌呤;继而以DMF为溶剂,和NH4F反应,以83%的收率得到2-氟-6-氯嘌呤;最后在饱和的NH3/CH3OH溶液中氨解,得到2-氟腺嘌呤。共4步,总收率58%,产物及中间体的分离纯化不需要柱层析。同时考察了保护基团和反应规模对收率的影响。本方法原料廉价易得,避免使用高毒和剧毒试剂,操作安全简便,有较好的实际应用价值。  相似文献   

12.
Deactivation of copper-ion-exchanged hydrogen-mordenite-type zeolite catalyst by SO2 for NO reduction by NH3 was examined in a fixed-bed flow reactor. The deactivation of the catalyst was strongly dependent on reaction temperature. At high reaction temperatures over 300°C, the catalyst did not lose its initial activity up to 50 h of operation, regardless of SO2 feed concentration from 500 to 20,000 ppm. However, at low reaction temperatures near 250°C, apparent deactivation did occur. Changes in the physicochemical properties such as surface area and sulfur content of deactivated catalyst well correlated with catalyst activity, depending upon reaction temperatures. The deactivation was due to pore blocking and/or filling by deactivating agents, which plugged and/or filled the pores of catalyst. The deactivating agents deposited on the catalyst surface were presumed to be (NH4)2SO4 and/or (NH4)HSO4 from the results of TGA and ion-chromatography measurement.  相似文献   

13.
Sound (undecayed control) and fungally‐pretreated wood samples were submitted to organosolv delignification. The cooking liquor used was methanol/water (78:22 v/v) containing CaCl2 and MgSO4 each at a concentration of 25 mmol dm−3. The cooking process was performed at 180 °C for reaction times varying from 5 to 100 min. Despite some differences in the lignin removal pattern, pseudo‐first order kinetic models permitted a prediction of delignification rate constants for all experiments. All biodegraded samples provided higher delignification rate constants than the undecayed control (2.0 × 10−2min−1 for the undecayed control and, for example, 14.2 × 10−2min−1 for the sample decayed by Trametes versicolor for 2.5 months). Biodegraded samples also presented significantly increased xylan removal rates. The type of biodegradation affected the behavior of wood samples under organosolv pulping. The highest delignification and xylan removal rate constants were observed in the sample decayed by T versicolor for 2.5 months (17% weight loss). However, high delignification and xylan removal rate constants were also observed in the sample decayed by Punctularia artropurpurascens for only 0.5 months (1.2% weight loss). Data obtained from a single fungal species pretreatment or data from all fungal pretreatments indicated that there is no clear correlation between the delignification constants and the wood weight or component losses. This lack of correlation suggested that the structure of residual polymers in decayed wood affects the delignification process in the organosolv pulping more than the removal extent of each individual component. © 2000 Society of Chemical Industry  相似文献   

14.
Studies were carried out for selective leaching of Cu with simultaneous avoidance of iron dissolution during leaching of oxidized copper ore in an aqueous NH3-(NH4)2SO4 system. The effects of leaching parameters, such as ammonia concentration, ammonium sulphate concentration, leaching time, and solid-to-liquid ratio, were investigated on leaching of copper. A 2n factorial experimental design method in the dissolution experiments was used. In addition, the “Steepest Ascent” method was also applied to determine the optimum leaching conditions. It was observed that the most effective parameters on the leaching of copper were ammonia concentration and leaching time. Only 0.17% of iron in ore was dissolved in ammonia and ammonium sulphate medium. The optimum conditions established for maximum copper recovery were: ammonia concentration 2.824 mol L-1, ammonium sulphate concentration 0.236 mol L-1, solid-to-liquid ratio 0.167 g mL-1, leaching time 2 h. Fixed parameters chosen in the experiments were: room temperature, average particle size 2.8 mm, stirring speed 500 rpm. Under the optimum conditions established for maximum copper recovery, the percentage of leached copper was 98.87.  相似文献   

15.
以Al Cl3作催化剂,研究助催化剂类型和用量对葡萄糖转化生成5-羟甲基糠醛收率的影响。对溶剂类型、反应温度和反应时间进行优化,得出最佳反应条件为:葡萄糖用量为1 g,Al Cl3用量为反应物物质的量的10%,助催化剂NH4Br用量为0.32 mol·L-1,二甲基乙酰胺作溶剂,用量为10 m L,反应温度100℃,反应时间60 min,此条件下,5-羟甲基糠醛收率为47%,比采用单一Al Cl3作催化剂提高14个百分点。  相似文献   

16.
A new preparation of supported MoO3 is described. Slurry MoO3/water is used instead of the solution (NH4)6Mo7O24. Preparation and HDS activity are illustrated for MoO3 supported over Al2O3, active carbon and ZrO2. Another application of the new principle is the preparation of high surface area MoO3/MgO by the reaction of MgO with slurry (NH4)6Mo7O24/methanol. Texture of MgO that is deteriorated in aqueous solution of (NH4)6Mo7O24 is stable in that slurry. “Slurry impregnation” is a special case of equilibrium adsorption impregnation. It is simple and it provides monolayer dispersion of molybdena.  相似文献   

17.
利用不同预处理方法获得的玉米秸秆底物研究木质素脱除对纤维素酶吸附量及酶解效率的影响。相比于其他处理方法,2%(质量分数)NaOH处理的底物具有最高的木质素脱除率(85%),最高的底物可及性[4.7 mg·(g 葡聚糖) -1]及酶解效率(18.9%)。通过对不同处理获得的底物进行Langmuir吸附等温曲线模拟,获得了最大吸附量(Wmax)与吸附平衡常数(K),且木质纤维素酶水解效率与纤维素酶吸附量具有很好的线性关系(R2>0.8),表明脱除木质素能很好地提高底物可及性与酶解效率。然而,提高NaOH浓度(3%,4%)进一步脱除木质素时,底物可及性与碳水化合物转化为单糖的效率反而明显下降。因此,适当脱除木质素而提高底物对纤维素酶的可及性将有助于获得更有效的酶水解效果。  相似文献   

18.
The selective reduction of NOx over H-mordenite (H-m) was studied using CH3OH as reducing agent. Results are compared with those obtained with other conventional reducing agents (ethylene and methane), with gas-phase reactions, and with other metal-exchanged mordenites (Cu-mordenite (Cu-m) and Co-mordenite (Co-m)). H-m was found to be an effective catalyst for the SCR of NOx with CH3OH. When different reducing agents were compared over H-m, CH3OH > C2H4 > CH4 was the order according to the maximum NO conversion obtained using 1% of oxygen in the feed. Instead, if selectivity is considered, the order results CH4 > CH3OH > C2H4. In reaction experiments, two distinct zones defined by two maxima with NO to N2 conversion are obtained at two different temperatures. A correlation exists between the said zones and the CO : CO2 ratio. At low temperatures, CO prevails whereas at high temperatures CO2 prevails. These results indicate that there exist different reaction intermediates. Evidence from reaction experiments, FTIR results, and transient experiments suggest that the reaction mechanism involves formaldehyde and dimethyl ether (DME) as intermediates in the 200–500°C temperature range. The surface interaction between CH3OH (or its decomposition products) and NO is negligible if compared with NO2, indicating that the oxidation of NO to NO2 on acid sites is a fundamental path in this system. Different from other non-oxygenated reductants (methane and ethylene), a gas-phase NOx initiation effect on hydrocarbon combustion was not observed.  相似文献   

19.
A reliable method to continuously monitor NH3 in a gas stream containing CO—NO—O2 and H2O has been developed. The method is based on a quantitative oxidation of NH3 to NO on a Pt catalyst. The extent of this reaction is affected by temperature, excess oxygen present, and space-velocity. There is a significant effect of inlet O2 concentration on extent of various reactions in the CO—NO—O2—H2O system on a Pt/γAl2O3 catalyst. At fixed space-velocity and catalyst temperature, and for fixed reactor inlet concentrations of CO and NO. there is negligible CO—NO reaction either in the absence of oxygen or in the presence of excess oxygen. However, short of the stoichiometric amount of O2 required for CO oxidation, there is appreciable CO—NO (and possibly also CO—NO—H2O) reaction whose extent increases with increasing oxygen concentration. This increase is especially dramatic in a narrow window of O2: concentrations near the stoichiometric point. Interestingly enough, near the stoichiometric point, self-sustained isothermal oscillations in the outlet CO and NO concentrations are also observed (Subramaniam and Varma. submitted for publication)  相似文献   

20.
Porous titania powders were prepared by hydrolysis of titanium tetraisopropoxide (TTIP) and were characterized at various calcination temperatures by nitrogen adsorption, X-ray diffraction, and microscopy. The effect of HCl or NH4OH catalysts added during hydrolysis on the crystallinity and porosity of the titania powders was investigated. The HCl enhanced the phase transformations of the titania powders from amorphous to anatase as well as anatase to rutile, while NH4OH retarded both phase transformations. Titania powders calcined at 500°C showed bimodal pore size distributions: one was intra-aggregated pores with average pore diameters of 3–6 nm and the other was interaggregated pores with average pore diameters of 35–50 nm. The average intra-aggregated pore diameter was decreased with increasing HCl concentration, while it was increased with increasing NH4OH concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号