首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-speed method for exactly calculating the time-dependent pressure of the radiated acoustic field from pulse-excited axisymmetrically curved surface or lens transducers using the Rayleigh surface integral is presented. The time-dependent pressure of a medical lens transducer with its outer surface shaped like a revolving arc is calculated as an example. Convolution-algorithm procedures are used to study the acoustic radiation field for various forms of exciting pulses. In the calculations, an integral representation of the impulse response function is reduced to a one-dimensional integration. With the help of the triangle criterion for identification and the principle of one-dimensional constriction, the calculation can be scanned over the segmented ranges of integration to carry out the numerical analysis. Ultrasound characteristics of the transducers are calculated, and their relationship to the structure of the transducers is examined.  相似文献   

2.
The design, performance, and potential applications are described for capacitive transducers with curved electrodes. A curved electrode governs the deflection of a compliant electrode under applied stress. A dielectric film on one electrode provides a variable region of fixed electrode spacing. The sensitivity and linear dynamic range of the transducers are higher and wider than devices with parallel electrodes. An electrical advantage is obtained from the permittivity of the dielectric film and a mechanical advantage from its thinness. Transducers have been constructed with silicon diaphragms that bend and polymer membranes that stretch in response to uniform pressure. The silicon sensors measured dynamic pressure changes over a linear range of 125 dB. An 885% change in capacitance was obtained for a sensor with a thin silicon diaphragm. Sensors with polycarbonate membranes demonstrated the ability of a low-cost transducer to measure pressure, fluid flow, displacement, and tilt. An active capacitive bridge circuit was developed to linearly measure capacitance changes up to 1000% and to control electrostatic actuators by force-balanced feedback. Methods and materials to construct microscale transducers are discussed along with the performance limitations of electrostatic actuation.  相似文献   

3.
The acoustical fields produced by a variety of focused axisymmetrically curved surface transducers with large aperture have been investigated on the basis of Fresnel-Kirchhoff diffraction theory. The interrelation of ultrasound characteristics with some structural aspects of the transducers has been calculated and compared. The forms of resulting intensity maxima and their resulting suitability for surgical lesion of tissues are compared through parameters such as “lesioning capability” and “focussing efficiency.” Although only modest changes in intensity distribution are possible, some may have applications in making lesions for the control of focal cancer and other pathologies  相似文献   

4.
Increasing transducer bandwidth and signal-to-noise ratio (SNR) is fundamental to improving the quality of medical ultrasound images. In previous work, the authors have proposed the use of multi-layer 1-3 PZT/epoxy composites to increase both but have encountered significant fabrication challenges. These difficulties include making the bond thickness between the layers extremely small relative to the ultrasound wavelength and aligning the posts of the composite to increase the coupling coefficient. The authors have routinely achieved a bond thickness of less than 5 mum but aligning the posts is more complicated. Finite element (PZFlex; Weidlinger, Assoc., New York, NY and Los Altos, CA) simulations show that the pulse-echo SNR and bandwidth degrade significantly with misalignment of the posts. Alignment of greater than 90% of the post pitch (i.e., tolerance of 10 to 20 mum) is required to obtain significant increases in SNR and bandwidth relative to conventional transducer arrays. This will be a difficult tolerance for large-scale production. Thus, the authors have developed a multi-layer composite hybrid array that will not require post alignment. This structure consists of a layer of 5 MHz 1-3 composite material on top of conventional 5 MHz PZT, which will provide greater SNR relative to conventional composites and increased bandwidth over multi-layer PZT. PZFlex simulations show that for a 2 MHz linear array element, the 2 layer hybrid structure increases the pulse-echo SNR by 7.5 dB over that from a single layer PZT element. Even without a matching layer, an increase in the -6 dB pulse-echo fractional bandwidth from 22% for the PZT element to 35% for the hybrid element was also predicted. Experimentally, in a 32 element array, the authors achieved an increase of 5.2 dB in SNR and an increased -6 dB bandwidth from 23 to 30%. In vitro and in vivo images showed corresponding improvements.  相似文献   

5.
This paper is concerned with the characterization of the true locally resolved surface normal velocity of an assumed piston-type ultrasonic transducer. Instead of involving a very complicated direct pointwise measurement of the velocity distribution, an inverse problem is solved which yields a spatially discretized weighting vector for the surface normal velocity of the transducer. The study deals with a spherically focused high frequency transducer, which is driven in pulse-echo mode. As a means of posing the inverse problem, the active transducer surface is divided into annuli of equal surface so that for each annulus the spatial impulse response can be calculated. An acrylic glass plate acts as a simple structured target. The resulting ill-posed nonlinear inverse problem is solved with an iterative regularized Gauss-Newton algorithm. The solution of the inverse problem yields an estimated weight for the surface normal velocity for each annulus. Experimental results for a thin copper wire target are compared to simulation results for both uniform and estimated surface normal velocities.  相似文献   

6.
Optoelectronics and fiber optics can be used to miniaturize and improve the flexibility of the transducer cable and transducer handle of medical diagnostic ultrasound scanners. The reduction in size has gained importance as 2-D array transducers with up to 1000 independent channels become accepted to improve diagnostic ultrasound images. The authors describe the analysis, design, fabrication and testing of a prototype silicon photoconductive semiconductor switch (PCSS). The monolithic silicon PCSS was used in combination with an infrared semiconductor diode laser with a fiber optic “pigtail” to shock excite and burst excite a 2-D array transducer element resonant at 2.5 MHz. Optically controlled voltage, current, and ultrasound pulses are compared to those from conventional electronic shock excitation and narrow band Doppler pulses. The optically triggered ultrasound pulse for single shock excitation produced 30 V spikes at the 2-D array element with a fall time of 200 nsec and a rise time of 2 μsec with a peak current through the transducer element of 34 mA. An optically produced burst of eight pulses at a frequency of 2.5 MHz produced 11 V spikes at the transducer with a fall time under 100 nsec and a rise time of approximately 300 nsec. The peak current per pulse was 25 mA through the transducer element. These results show the feasibility of applying optoelectronic technology to replace conventional electronic transmitter technology  相似文献   

7.
Design considerations for piezoelectric polymer ultrasound transducers   总被引:5,自引:0,他引:5  
Much work has been published on the design of ultrasound transducers using piezoelectric ceramics, but a great deal of this work does not apply when using the piezoelectric polymers because of their unique electrical and mechanical properties. The purpose of this paper is to review and present new insight into seven important considerations for the design of active piezoelectric polymer ultrasound transducers: piezoelectric polymer materials selection, transducer construction and packaging requirements, materials characterization and modeling, film thickness and active area design, electroding selection, backing material design, and front protection/matching layer design. Besides reviewing these design considerations, this paper also presents new insight into the design of active piezoelectric polymer ultrasonic transducers. The design and fabrication of an immersible ultrasonic transducer, which has no adhesive layer between the active element and backing layer, is included. The transducer features direct deposition of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer onto an insulated aluminum backing substrate. Pulse-echo tests indicated a minimum insertion loss of 37 dB and -6 dB bandwidth of 9.8 to 22 MHz (71%). The use of polymer wear-protection/quarter-wave matching layers is also discussed. Test results on a P(VDF-TrFE) transducer showed that a Mylar/sup TM/ front layer provided a slight increase in pulse-echo amplitude of 15% (or 1.2 dB) and an increase in -6 dB pulse-echo fractional bandwidth from 86 to 95%. Theoretical derivations are reported for optimizing the active area of the piezoelectric polymer element for maximum power transfer at resonance. These derivations are extended to the special case for a low profile (i.e., thin) shielded transducer. A method for modeling the non-linear loading effects of a commercial pulser-receiver is also included.  相似文献   

8.
Chatterjee S  Kumar YP 《Applied optics》2011,50(18):2823-2830
We present a new (to our knowledge) technique for introducing phase shifts between the laterally sheared emergent beam components of a cyclic path optical configuration (CPOC). The phase shifts are introduced by applying a small change in the angle of incidence of the incident beam due to the small angular rotation of the CPOC setup. Phase-shifting interferometry has been applied along with this phase-shifting technique for a CPOC with lateral shear to find the surface slope/profile of curved optical surfaces. Results for a spherical optical surface have been discussed. An optical setup for measurement of the surface profile of toroidal beam line mirrors of synchrotron radiation sources is proposed.  相似文献   

9.
10.
Control over the pattern of thermal damage generated by interstitial ultrasound heating applicators can be enhanced by changing the ultrasound frequency during heating. The ability to change transmission frequency from a single transducer through the use of high impedance front layers was investigated in this study. The transmission spectrum of multifrequency transducers was calculated using the KLM equivalent circuit model and verified with experimental measurements on prototype transducers. The addition of a quarter-wavelength thick PZT (unpoled) front layer enabled the transmission of ultrasound at two discrete frequencies, 4.7 and 9.7 MHz, from a transducer with an original resonant frequency of 8.4 MHz. Three frequency transmission at 3.3, 8.4, and 10.8 MHz was possible for a transducer with a half-wavelength thick front layer. Calculations of the predicted thermal lesion size at each transmission frequency indicated that the depth of thermal lesion could be varied by a factor of 1.6 for the quarter-wavelength front layer. Heating experiments performed in excised liver tissue with a dual-frequency applicator confirmed this ability to control the shape of thermal lesions during heating to generate a desired geometry. Practical interstitial Designs that enable the generation of shaped thermal lesions are feasible.  相似文献   

11.
High-intensity focused ultrasound surgery (FUS) has been developed for the extracorporeal treatment of various benign and malignant soft tissue tumors. The system developed at the Institute of Cancer Research/Royal Marsden (ICR/RM) National Health Service (NHS) Trust incorporates a 150 mm focal length focused bowl transducer operated at 1.7 MHz, and is currently undergoing Phase 1 clinical trials for the treatment of benign prostatic hyperplasia and superficial bladder cancer. However, the application of this transducer is limited by its focal length to a maximum depth of 100 mm, and by power absorption in the skin to a minimum depth of 40 mm. A computer model of acoustic fields, which assumes uniform excitation of the transducer over its entire surface, has previously been published. This has been used both to calculate the intensity in nonattenuating media, and to estimate the absorbed power per unit volume in homogeneous tissues in order to allow determination of the transducer configurations (frequency, focal length, and diameter) necessary for the treatment of both deep (~150 mm) and shallow (~20 mm) soft tissue tumors. These depths encompass the typical range for human tissues which are likely to be treated. Calculations cover the frequency range 0.5-4.5 MHz, focal lengths from 70 to 200 mm, and transducer diameters from 30 to 190 mm. The results show that appropriate transducers can be designed for the noninvasive treatment of tumors in specific organs  相似文献   

12.
Magnetic resonance imaging (MRI)-based temperature mapping very close to the surface of an ultrasound transducer is not possible due to the large magnetic susceptibility-induced image artifacts that arise from the materials used in transducer construction. Here, it is shown in phantoms that "susceptibility-compensated" MRI sequences can be used to measure thermal increases ~1 mm from the surface of a 4-element cymbal array transducer, which has been used widely for noninvasive transdermal drug delivery. The estimated temperatures agree well with those measured using thermocouples.  相似文献   

13.
In the post genome-sequencing era, physiological phenotyping of genetically engineered mice is critical to further our understanding of the functional consequences of specific genetic defects. We have developed a 40-50 MHz ultrasound biomicroscopy-(UBM) guided, pulsed Doppler system for the sensitive detection of in vivo blood velocity waveforms in the mouse embryonic cardiovascular system. Our approach uses separate transducers for simultaneous imaging and Doppler blood flow measurements. To this end, unfocused, air-backed lithium niobate (LiNbO/sub 3/) transducers provide sensitive Doppler detection and the flexibility of adjusting the axial position of the pulsed Doppler sample volume over many millimeters depth range of the collimated ultrasound beam. In this paper we describe the fabrication and characterization of the electromechanical and ultrasonic beam properties of 44-MHz LiNbO/sub 3/ Doppler transducers. We further demonstrate the utility of these Doppler transducers for interrogating blood vessels such as the dorsal aorta over a range of mouse embryonic stages and axial range-gate depths.  相似文献   

14.
This paper considers variational methods to derive two-dimensional plate equations for piezoelectrically actuated flexural mode ultrasound transducers. In the absence of analytical expressions for the equivalent circuit parameters of a flexural mode transducer, it is difficult to calculate its optimal parameters and dimensions, and to choose suitable materials. The influence of coupling between flexural and extensional deformation, and coupling between the structure and the acoustic volume on the dynamic response of piezoelectrically actuated flexural mode transducer is analyzed using variational methods. Variational methods are applied to derive two-dimensional plate equations for the transducer, and to calculate the coupled electromechanical field variables. In these methods, the variations across the thickness direction vanish by using the stress resultants. Thus, two-dimensional plate equations for a stepwise laminated circular plate are obtained.  相似文献   

15.
High-frequency spectral integral formulae are derived for the frequency-domain voltage of reciprocal electro-acoustic ultrasonic transducers interacting with a fluid-immersed cylindrically-layered elastic configuration. The transducers may insonify the cylindrical configuration from either the interior or the exterior and may be operated in either pulse-echo or pitch-catch mode. The formulae are arrived at through the use of a traveling wave spectral representation of all pertinent wave fields along the azimuthal and axial directions and use of Plancherel's theorem to convert the conventional surface integral for the transducer voltage into a spectral one. Within this representation, the transducers are expressed in terms of their radiation and reception spectral amplitudes on a cylindrical surface and the interaction of their fields with the cylindrically layered environment is expressed in terms of a composite spectral reflection coefficient. The integral formulae allow for computation of the transducer voltage and transducer beam interaction with the cylindrical environment in one step. The derivation is carried out for three-dimensional beams and specialized to two-dimensional (sheet) beams that extend to infinity along the axial direction. Furthermore, the formulae are applied to the case where complex transducer points are used to simulate transducers with quasi-Gaussian distribution profiles.  相似文献   

16.
Modeling and optimization of high-frequency ultrasound transducers   总被引:1,自引:0,他引:1  
Obtaining an accurate transducer model for a high-frequency transducer can be troublesome using traditional models, such as the KLM model, since it is often difficult to measure precisely the piezoelectric, dielectric, and mechanical properties of the transducer. This paper describes an alternative method of modeling transducers using network theory. The network theory model for a transducer is determined from a measurement of the transducer impedance in water and the pulse-echo response of the system for a given electrical source and load. A discussion of how this model can be used to optimize the design of an electrical matching circuit is given. This method is illustrated by designing a two-element transmission line matching circuit for a miniature 53 MHz transducer. Excellent agreement between the network model prediction and the experimental response is obtained  相似文献   

17.
18.
19.
For pt.I, see ibid., vol.46, no.4, p.961-71 (1999). Increasing transducer bandwidth and signal-to-noise ratio (SNR) is fundamental to improving the quality of medical ultrasound images. In previous work, we have proposed the use of multi-layer 1-3 PZT/polymer composites to increase both, but have encountered significant fabrication challenges. Thus, we have developed a multi-layer composite hybrid array that will not require post alignment. Starting from a 2-MHz, three-layer PZT-5H, thick film transducer designed for 1.5-D arrays, cuts are made only through the top layer and back-filled with epoxy, forming a composite layer on top of two ceramic layers. Finite element (PZFlex) simulations show that for a 2-MHz phased-array element with a single matching layer, the three-layer hybrid structure increases the pulse echo SNR by 11 dB versus a single layer PZT element and improves -6 dB pulse echo fractional bandwidth by a factor of 1.4. Composite hybrid arrays fabricated in our laboratory showed an improvement in SNR of 6 to 11 dB over a PZT control and an increase in -6 dB bandwidth by a factor of 1.1. Images from a phased-array scanner confirmed these improvements  相似文献   

20.
Differential equations in the cylindrical coordinate system have been solved to calculate vibration mode of a curved, clamped, piezoelectric multilayer film. Type I has two clamps at straight ends with uniform film curvature, and Type II has the same two clamps with nonuniform curvature in which the radii are different for the central region and for side regions. The solutions include a uniform displacement term, flexural waves with sinusoidal terms, and a hyperbolic cosine term. By numerical computations, the vibration modes and frequency response of displacement are shown, as are various transducer performances. Mechanical losses of the layer materials were taken as complex Young's moduli with Q values assumed to be constant with frequency. Numerical calculations for 28-/spl mu/m PVDF with 25-/spl mu/m polyester enforcement have shown that (1) the resonance frequency is not necessarily proportional to the inverse of curvature radius as classical theory describes, and, furthermore, resonance diminishes for a certain range of radii, forming a stop band; (2) a back air cavity thinner than 150 /spl mu/m significantly increases the resonance frequency; (3) Type II generates much higher output pressure than Type I; (4) receiver sensitivities for Type I and Type II are not much different; and (5) the effect of radiation impedance is small leading to /spl sim/7% output reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号