共查询到20条相似文献,搜索用时 11 毫秒
1.
A single-wall carbon nanotubes (SWNT)-film coated glassy carbon electrode (GCE) was described for the determination of tryptophan. In pH 2.5 Na2HPO4-citric acid buffer, tryptophan yields a well-defined and very sensitive oxidation peak at about 1.08 V at the SWNT-film coated GCE. The oxidation peak current increases greatly and the peak potential shifts toward more negative direction at the SWNT-modified GCE in contrast to that at the bare GCE. Under optimized conditions, the oxidation peak current is proportional to the concentration of tryptophan over the range from 4 x 10(-8) to 1 x 10(-5) mol/L. The detection limit is 1 x 10(-8) mol/L at 3 min of accumulation. Using the proposed method, tryptophan in the human's blood serum samples was determined. 相似文献
2.
The electrochemical properties of ferrocene (Fc) on a glassy carbon (GC) electrode modified by multi-walled carbon nanotubes (MWNTs) in the presence and absence of surfactants have been investigated by progressively voltammetric sweeping. Dihexadecyl phosphate (DHP) and hexadecyl trismethyl ammonium chloride (HTAC) are found to impact the redox reactions of Fc adsorbed on MWNT surfaces. An excess amount of DHP dispatches Fc from MWNTs surfaces, leading to weakly adsorbed configuration of Fc. The formal potential of the adsorbed Fc in the presence of DHP shifts to a lower potential. Cationic surfactant HTAC on MWNT surfaces depresses the redox reactions corresponding to the weakly adsorbed configuration of Fc. It becomes evident that the configuration and hence redox reactions of Fc depend strongly on the presence and concentrations of surfactants on the electrode surfaces and in the buffer solutions. 相似文献
3.
4.
Cytochrome c (Cyt c) was covalently immobilized on a boron-doped nanocrystalline diamond (BDND) electrode via surface functionalization with undecylenic acid methyl ester and subsequent removal of the protecting ester groups to produce a carboxyl-terminated surface. Cyt c-modified BDND electrode exhibited a pair of quasi-reversible and well-defined redox peaks with a formal potential (E(0)) of 0.061 V (vs Ag/AgCl) in 0.1 M phosphate buffer solution (pH 7.0) and a surface-controlled process with a high electron transfer constant (ks) of 5.2 +/- 0.6 s(-1). The electrochemical properties of as-deposited and Cyt c-modified boron-doped microcrystalline diamond (BDMD) electrodes were also studied for comparison. Investigation of the electrocatalytic activity of the Cyt c-modified BDND electrode toward hydrogen peroxide (H2O2) revealed a rapid amperometric response (5 s). The linear range of response to H2O2 concentration was from 1 to 450 microM, and the detection limit was 0.7 microM at a signal-to-noise ratio of 3. The stability of the Cyt c-modified BDND electrode, in comparison with that of the BDMD and glassy carbon counterpart electrodes, was also evaluated. 相似文献
5.
A facile and reliable electrochemical technique at beta-cyclodextrin incorporated carbon nanotubes modified glassy carbon electrode (beta-CD/CNTs/GCE) was proposed for determination of pentachlorophenol (PCP). The electrochemical behavior of PCP at the beta-CD/CNTs/GCE was investigated by cyclic voltammetry and linear sweep voltammetry. The beta-CD/CNTs/GCE showed good analytical performance characteristics in electrocatalytic oxidation of PCP, compared with the simple carbon nanotube modified electrode (CNTs/GCE) and bare glassy carbon electrode (GCE). After accumulation for 5 min on beta-CD/CNTs/GCE, the peak current increased linearly with the concentration of PCP in the range from 8.0 x 10(-7) to 1.04 x 10(-5) mol/L. The detection limit was 4.0 x 10(-8) mol/L at 3 sigma level. The proposed electrode presented good repeatability for the determination of PCP in artificial wastewater, and the recovery was 97%-103%. This modified electrode combined the advantages of carbon nanotubes and supramolecular cyclodextrin, leading to new capabilities for electrochemical detection of PCP. 相似文献
6.
A cobalt(II) tetra-neopentyloxy phthalocyanine-multi-walled carbon nanotubes (CoTNPPc–MWNTs) composite was synthesized and
characterized by UV–Vis spectra and transmission electron microscopy. The CoTNPPc–MWNTs glassy carbon electrode (CoTNPPc–MWNTs/GCE)
was prepared by drop coating. The electrocatalytic performance of the chemically modified electrode was investigated for oxidation
of ascorbic acid (AA). It was found that in phosphate buffer solution at pH = 6.60, the chemically modified electrode exhibited
excellent electrocatalytic activity toward the oxidation of AA. The oxidation peak current increased linearly with the concentration
of AA in the range of 10 μM–1.6 mM within the detection limit of 5 μM and low response time of 4 s. 相似文献
7.
Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes 总被引:6,自引:0,他引:6
The performance of glassy carbon (GCE) and graphite pencil electrodes (PGE) modified with multiwalled carbon nanotubes (CNTs) are compared, based on the direct electrochemical detection of nucleic acids. This is accomplished by monitoring the differential pulse voltammetry changes of the guanine signal. CNT-modified PGE compares favorably to that of the commonly used CNT-modified GCE owing to the intrinsic improved performance of the supporting PGE. The better intrinsic characteristics of the PGE are related to its composite structure and higher level of porosity compared to GCE. The performance characteristics of the direct DNA hybridization on the disposable CNT-modified PGE are studied in terms of optimum analytical conditions such as probe concentration, target concentration, hybridization time, and selectivity. The new DNA biosensor described here has shown some important advantages such being inexpensive, sensitive, selective, and able to generate reproducible results using a simple and direct electrochemical protocol. 相似文献
8.
Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode 总被引:28,自引:0,他引:28
The electrochemical behavior of a film of single-wall carbon nanotubes (SWNTs) functionalized with carboxylic acid groups was studied extensively on a glassy carbon (GC) electrode. One stable couple corresponding to the redox of the carboxylic acid group, which was supported by XPS and IR experiments, was observed. The electrode process involved four electrons, while the rate-determining step was a one-electron reduction. The SWNT film-modified electrode showed favorable electrocatalytic behavior toward the oxidation of biomolecules such as dopamine, epinephrine, and ascorbic acid. 相似文献
9.
Hajar Shekarchizadeh Ali A. Ensafi Mahdi Kadivar 《Materials science & engineering. C, Materials for biological applications》2013,33(6):3553-3561
A novel and selective electrochemical sensor was successfully developed for the determination of sucrose by integrating electropolymerization of molecularly imprinted polymer with multiwall carbon nanotubes. The sensor was prepared by electropolymerizing of o-phenylenediamine in the presence of template, sucrose, on a multiwall carbon nanotube-modified glassy carbon electrode. The sensor preparation conditions including sucrose concentration, the number of CV cycles in the electropolymerization step, pH of incubation solution, extraction time of template from the imprinted film and the incubation time were optimized using response surface methodology (RSM). A mixture of acetonitrile/acetic acid was used to remove the template. Hexacyanoferrate(II) was used as a probe to characterize the sensor using electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. Capturing of sucrose by the modified electrode causes decreasing the response of the electrode to hexacyanoferrate(II). Calibration curve was obtained in the sucrose concentration range of 0.01–10.0 mmol L? 1 with a limit of detection 3 μmol L? 1. This sensor provides an efficient way for eliminating interferences from compounds with similar structures to sucrose. The sensor was successfully used to determine sucrose in sugar beet juices with satisfactory results. 相似文献
10.
A cylindrical rod composed of a uniform mixture of single-wall carbon nanotubes and alumina powders dissolved in paraffin was inserted in the center of a radio frequency cavity. The complex dielectric constant of carbon tubes at various frequencies was measured by a resistance-inductance-capacitance (RLC) meter and a microwave network analyzer. The cylindrical rod benefits the protection of the sample from adsorbing moisture and preventing the rod from filling with air, thus making accuracy experiment values. The real part and the imaginary part of the dielectric constants of single-wall carbon nanotubes are, respectively, increase and decrease in magnitudes as frequency increases satisfactorily in complying with the portray from the free electron Drude model. 相似文献
11.
Kim SK Ahmed MS Jeong H You JM Jeon S 《Journal of nanoscience and nanotechnology》2011,11(3):2407-2412
A chemically modified electrode [poly(TAPP)-SWNT/GCE] was prepared by electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP)-single walled carbon nanotubes (SWNT) on the surface of a glassy carbon electrode (GCE). This modified electrode was employed as an electrochemical biosensor for the determination of serotonin concentration and exhibited a typical enhance effect on the current response of serotonin and lower oxidation overpotential. The biosensor was very effective to determined 5-HT in a mixture. The linear response was in the range 2.0 x 10(-7) to 1.0 x 10(-5) M, with a correlation coefficient of 0.999 [i(p)(microA) = 3.406 C (microM)+0.132] on the anodic current, with a detection limit of 1 x 10(-9) M. Due to the relatively low currents and different potentials in the electrochemical responses to ascorbic acid and dopamine, the modified electrode is a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of ascorbic acid and dopamine. 相似文献
12.
Vieira HS Andrada DM Mendonça R Santos AP Martins MD Macedo WA Gorgulho HF Pimenta LP Moreira RL Jorio A Pimenta MA Furtado CA 《Journal of nanoscience and nanotechnology》2007,7(10):3421-3430
A classical protocol widely used in organic chemistry of aromatic and polyaromatic molecules has been successfully applied in this work for the decarboxylation of oxidized single-wall carbon nanotube (SWNT) to rend C-H SWNT derivatives. SWNT produced by arc discharge method have been oxidized during a purification process using strongly oxidant agents, such as hydrogen peroxide and nitric acid. The decarboxylation of oxidized SWNT has been conduced with copper(I) oxide in a 50:50 solution of N-methylpyrrolidone and quinoline. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and acid-base potentiometric titration analyses were carried out to characterize quali and quantitatively the changes in the chemical environment on the SWNT surface in each step of the purification and the decarboxylation process. Those techniques showed the appearance of mainly carboxylic and phenolic groups after the purification process and the disappearance of the carboxylic groups after the decarboxylation reaction. Fourier transform infrared spectroscopy analysis indicated also the formation of aliphatic and aromatic C-H groups. X-ray photoelectron spectroscopy and potentiometric titration results determined an efficiency higher than 90% for our decarboxylation procedure. The purity and structural quality of the SWNT sample used in the decarboxylation process were evaluated by thermogravimetry and Raman spectroscopy. Thermogravimetric analysis identified a purified sample with approximately 80 wt% of SWNT, in fractions distributed in highly structured SWNTs (25 wt%), with distribution in composition, length and structural quality (35 wt%) and with very defective and short tubes (25 wt%). The damages on the purified SWNT walls were characterized by the Raman scattering analysis. 相似文献
13.
A bare platinum disk electrode without further decoration was directly used to determine oxalic acid (OA), showing good linear ranges of 0.57–104.01 μM and 104.01–228.75 μM with a low detection limit of 0.38 μM (S/N = 3). In contrast, platinum nanoparticles (PtNPs) dispersed on a glassy carbon electrode were successfully achieved by an one-step electrochemical deposition method, possessing relatively wider linear detection ranges of 1.14–342.80 μM and 342.80–548.92 μM for OA with a lower detection limit of 0.28 μM (S/N = 3). Both the proposed electrochemical sensors exhibit great reproducibility, stability and selectivity. In particular, they have been applied to the determination of OA in real spinach samples, showing excellent analytical performance. 相似文献
14.
Ida Tiwari Manorama Singh Mandakini Gupta S.K. Aggarwal 《Materials Research Bulletin》2012,47(7):1697-1703
We herein report a simple, low cost and green preparation of nanowires of (anthraquinone-2-carboxylic acid/amino functionalized) multiwalled carbon nanotubes (HOOC-2-AQ/AMWCNTs) which has been further employed for the development of highly sensitive oxygen sensor. The prepared composite has been characterized by TEM and electrochemical studies. The glassy carbon electrode modified with composite shows an irreversible and good electrocatalytic activity for the reduction of oxygen. The reduction potential of the oxygen was shifted 460 mV towards the positive potential with this modified electrode as compared to bare glassy carbon electrode. The prepared material was stable with no leaching observed of the mediator. A linear response range of 0.2–6.8 mg L?1, with a sensitivity of 5.0 μA L mg?1 and a detection limit of 0.02 mg L?1 were obtained with this sensor. 相似文献
15.
Biodistribution of carbon single-wall carbon nanotubes in mice 总被引:7,自引:0,他引:7
Wang H Wang J Deng X Sun H Shi Z Gu Z Liu Y Zhao Y 《Journal of nanoscience and nanotechnology》2004,4(8):1019-1024
Carbon nanotubes are promising for use in biomedical and pharmaceutical sciences. Therefore, it becomes imperative to know the basic biological properties of carbon nanotubes in vivo. We labeled the water-soluble hydroxylated carbon single-wall nanotubes with radioactive 125I atoms, and then the tracer was used to study the distribution of hydroxylated carbon single-wall nanotubes in mice. They moved easily among the compartments and tissues of the body, behaving as small active molecules though their apparent mean molecular weight is tremendously large. This study, for the first time, affords a quantitative analysis of carbon nanotubes accumulated in animal tissues. 相似文献
16.
Mabrouk PA 《Analytical chemistry》1996,68(1):189-191
The effect of the total water content on the persistence and rate of direct heterogeneous electron transfer between the imidazole complex of microperoxidase-11 (im-MP-11) and naked gold, platinum, and glassy carbon (GC) in dimethyl sulfoxide (DMSO) solutions containing 0.1 M tetra-n-butylammonium perchlorate was investigated using cyclic voltammetry. Electron transfer between im-MP-11 and Au, Pt, and GC has been found to be persistent for more than 1 h and at least quasi-reversible [k(s)' = (8.7 ± 0.1) × 10(-4) cm/s (Au), k(s)' = (7.2 ± 1.3) × 10(-4) cm/s (Pt), and k(s)' = (5.7 ± 1.0) × 10(-4) cm/s (GC)] in dimethyl sulfoxide containing an absolute water content between 0.1 and 1.8%. The heterogeneous electron transfer rate constant is independent of the total water content of the DMSO solution when between 0.1 and 1.8% water is present. 相似文献
17.
Cantoro M Hofmann S Pisana S Scardaci V Parvez A Ducati C Ferrari AC Blackburn AM Wang KY Robertson J 《Nano letters》2006,6(6):1107-1112
We report surface-bound growth of single-wall carbon nanotubes (SWNTs) at temperatures as low as 350 degrees C by catalytic chemical vapor deposition from undiluted C2H2. NH3 or H2 exposure critically facilitates the nanostructuring and activation of sub-nanometer Fe and Al/Fe/Al multilayer catalyst films prior to growth, enabling the SWNT nucleation at lower temperatures. We suggest that carbon nanotube growth is governed by the catalyst surface without the necessity of catalyst liquefaction. 相似文献
18.
Understanding catalysed growth of single-wall carbon nanotubes 总被引:1,自引:0,他引:1
Classical molecular dynamics simulations using a reactive force field, which allows simulation of bond-breaking and bond-forming, are carried out to investigate the several stages of a catalysed synthesis process of single-wall carbon nanotubes. The simulations assume instantaneous catalysis of a precursor gas on the surface of metallic nanoclusters, illustrating how carbon atoms dissolve in the metal cluster and then precipitate on its surface, evolving into various carbon structures, finally forming a cap which eventually grows to a single-wall nanotube. The results are discussed in the context of experimental synthesis results. 相似文献
19.
Simultaneous determination of serotonin and dopamine at the PEDOP/MWCNTs-Pd nanoparticle modified glassy carbon electrode 总被引:1,自引:0,他引:1
Electrochemical determination of dopamine (DA) and serotonin (5-HT) have been studied at a modified glassy carbon electrode (GCE) in 0.1 M phosphate buffer solution (PBS) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at pH 7.4, all over the interfering biomolecule ascorbic acid (AA). The GCE was modified by palladium-functionalized, multi-walled carbon nanotubes (MWCNTs-Pd) with electrochemical deposition of poly 3,4-ethylenedioxy pyrrole (PEDOP), denoted as PEDOP/MWCNTs-Pd/GCE, and investigated by SEM and EIS experiments. The highly electrocatalytic activity of the modified electrode toward 5-HT and DA was demonstrated from the sensitive and well-separated voltammetric experiment. The oxidation peaks found were 0.165 and 0.355 mV for DA and 5-HT, respectively. The composite film shows a significant accumulation effects on two species, as well as the mutual interference among the analytes. This biosensor was best in response compared to other modified electrodes made in the same lab. The lowest detection limits were found to be 5.0 x 10(-9) and 1.0 x 10(-8) for 5-HT and DA, respectively. The respective linear ranges were determined as 1.0 x 10(-7) to 2.0 x 10(-4) and 1.0 x 10(-7) to 2.0 x 10(-4) for 5-HT and DA. 相似文献
20.
We present first-principles pseudopotential-based density functional theory (DFT) calculation of structures, full phonon dispersions and thermal properties of armchair single wall armchair carbon nanotubes (SWCNTs) in the isolated and bundle forms. Comparison between the properties of isolated and bundled nanotubes is used to estimate the intertube interaction. We determine correlation between vibrational modes of a graphene sheet and of the nanotube to understand how rolling of the sheet results in mixing between modes and changes in vibrational spectrum. The radial breathing mode hardens with increasing diameter (or decreasing curvature). We estimate thermal expansion coefficient of nanotubes within a quasiharmonic approximation and identify the modes that dominate thermal expansion of some of these SWCNTs both at low and high temperatures. 相似文献