共查询到17条相似文献,搜索用时 62 毫秒
1.
在电感耦合等离子体原子发射光谱基础上用标准加入法对纯铜中砷、铋、铁、镍、磷、铅、硫、锑、锡和锌10种杂质元素的测定进行了研究。由于工作溶液是在样品溶液中加入被测元素的标准溶液而得到,工作溶液与样品溶液具有相同基体,因此可以消除基体干扰对测定的影响。同时在测定时不需要另配制以铜打底的校准溶液,不但操作简单,而且能减少杂质元素引入,提高了方法的准确度。本法用于纯铜中杂质元素的测定,回收率为96%~108%,完全能满足纯铜样品中杂质元素的分析检测要求。 相似文献
2.
建立了应用电感耦合等离子体原子发射光谱法(ICP-AES)测定金属镁中Be、Al、Si、Cr、Mn、Fe、Ni、Cu、Zn、Cd、Sb、Bi等12种杂质元素的分析方法。样品用HCl+HNO3经微波消解后,用ICP-AES测定上述12种元素,对影响测定的各种因素进行了详细的研究,确定了仪器的最佳工作参数,选择了合适的分析谱线。结果表明,12种金属元素的检出限在0.12~17.59 μg/L之间;校准曲线的线性关系良好,线性相关系数R2≥0.999 9;样品分析结果的精密度良好,RSD 相似文献
3.
锡精矿经盐酸和硝酸的混合酸消解,水解分离锡后,电感耦合等离子体原子发射光谱法测定锡精矿中的铅、砷、铜、锌、铋杂质元素。对溶样条件、测定介质、基体及共存元素间干扰进行了相关讨论;20倍的镁、钙、钨,100倍的硅和质量分数小于10%的铁等共存元素对待测元素几乎没有干扰。方法基体效应较小,各待测元素之间也没有明显干扰。在仪器最佳工作条件下,方法的回收率为85%~102%,相对标准偏差(RSD,n=12)为0.91%~2.36%。使用该法分析标准物质和实际样品,分析结果与认定值或其他常规方法测定值一致,均在允许误 相似文献
4.
应用电感耦合等离子体原子发射光谱法测定金属锂中铝、金、钡、钙、钴、铬、铜、铁、铟、镁、锰、钼、镍、铅、钯、铂、锡、钛、钒、钇和锌21种微量元素。选择了元素的分析线,考察了载气流量、硝酸浓度和基体锂对测定的影响。当试液中锂和钠的浓度分别小于12 mg/mL和22μg/mL,铝、铁、铬、钙、镍、镁、铅等浓度分别小于10μg/mL时,对选择的分析线的干扰不明显。基体效应通过基体匹配和背景校正克服。试液中锂的浓度为10 mg/mL时,元素的测定范围为20~640μg/g。用本法测定-金属锂样品中的21种杂质元素, 相似文献
5.
金属锑及三氧化二锑样品经酸消解后,未经基体分离直接以高分辨率顺序扫描型电感耦合等离子体原子发射光谱仪测定其中杂质元素,发现只要控制好消解温度,铜、镉、铅、砷、铬、硒、锡、汞、铋等多种杂质元素都可以进行同时检测,简化了实验步骤。本文对样品的消解方法、溶液的酸度选择、光谱和基体干扰进行了试验,在优化仪器的工作条件下,通过基体匹配,有效地消除了基体干扰的影响。方法简便、快速,可满足工业分析要求,方法检出限均小于0.02μg/mL,回收率在96.0%~106.4%范围内,相对标准偏差<3%(n=6),测定结果同认定值相符合。 相似文献
6.
采用硝酸-过氧化氢混合溶液分解样品,酒石酸防止锑、铋等元素水解,抗坏血酸还原后过滤并收集滤液。还原的银用硝酸-过氧化氢-酒石酸混合溶液分解,盐酸沉淀分离基体银以消除基体干扰,合并滤液,并在稀盐酸介质中,于电感耦合等离子体原子发射光谱仪(ICP-AES)上测定银中8种杂质元素(铜、铋、铁、铅、锑、钯、硒和碲)含量。通过试验,确定了适宜称样量为0.50~1.00 g。体系中残余银和共存其他杂质元素对测定结果无影响。使用不同方法对试验样品中铜、铋、铁、铅、锑、钯、硒和碲进行测定,测定结果与国标方法相符,相对标准偏差均小于5.0%。 相似文献
7.
8.
对电感耦合等离子体原子发射光谱法测定高纯铋( >4N)中Cu、Fe、Pb等8种元素的含量进行了研究,考察了基体元素铋对杂质元素的光谱和非光谱干扰以及基体浓度对杂质元素谱线信背比和检出线的影响。在优化的实验条件下,获得了满意的结果。 相似文献
9.
10.
介绍了电感耦合等离子体原子发射光谱法(ICP-AES)测定钛合金中贵金属元素Ir、Au、Pd、Rh、Ru的方法。通过溶样方法选择、仪器工作 参数优化、基体和共存元素对待测元素的影响等试验,确定了采用盐酸、氢氟酸和硝酸溶解样品,用基体匹配方法消除基体钛对测定的影响 。在仪器最佳工作条件下、选择了Ir 224.268nm 、Au 267.595 nm 、Pd 340.458 nm、Rh 343.489 nm 、Ru 240.272 nm 谱线为分析线,测 得方法的检出限是0.000 1 ~0.003 μg/mL。加标回收及精密度试验表明:本方法能满足钛合金中Ir、Au、Pd、Rh、Ru等元素分析的要求, 回收率在90%~110%之间,相对标准偏差小于14%(n=6)。 相似文献
11.
采用电感耦合等离子体原子发射光谱仪的耐氢氟酸惰性进样系统,在样品用氢氟酸、硝酸、高氯酸溶解完全后无需赶尽氢氟酸和硅基体,直接进样,电感耦合等离子体原子发射光谱法同时测定了工业硅粉中铁、铝、钙、钛、锰、镍、硼和磷8种杂质元素。因为在溶样过程中大部分基体硅已挥发除去,基体效应对铁、铝、钙、钛、锰、镍的测定没有影响,但是对硼和磷的测定仍有影响,这种影响可以采用垂直观测方式克服。按照空白值的3倍标准偏差计算方法的检测限,得到铁、铝、钙、钛、锰、镍、硼和磷的检测限(w/%)分别为0.004,0.001,0.004,0.001,0.000 1,0.000 1,0.000 04和0.000 06。方法已用于工业硅中上述8种杂质元素的测定,测定值与标准方法(GB/T 14849.4—2008)的测定值或认定值相符。 相似文献
12.
建立了用电感耦合等离子体发射光谱法(ICP-AES)同时测定钒铁合金中Si,Mn,P,Al ,Ti,Ni,Cr,Cu,As元素含量的分析方法。提出用酸溶和碱熔相结合的试样预处理方法,克服了酸溶法导致铝、硅的测定结果偏低和碱熔法易堵塞ICP矩管和雾化器的两大弊端。基体钒和铁的干扰采用基体匹配方法消除。在选用的最佳光谱线和合适的工作条件下测定,方法检出限为2~42 μg/L。方法用于测定钒铁标准样品和合成样品,各元素的测定值与认定值或合成值一致,相对标准偏差(n=10)在0.7%~9.8%范围。 相似文献
13.
铍中铝、钴、铬、铜、铁、镁、锰、镍、铅、硅和锌等11种杂质元素含量的准确测定,是判定铍材是否合格的重要指标。目前,上述杂质元素的测定标准为GJB 2513A—2008《铍化学分析方法》,方法分别采用光度法和原子吸收光谱法对各元素逐一测定,测定周期很长。试验采用盐酸-硝酸溶解样品,选择Al 308.215nm、Co 230.786nm、Cr 284.325nm、Cu 324.754nm、Fe 261.187nm、Mg 285.213nm、Mn 260.569nm、Ni 221.647nm、Pb 182.205nm、Si 250.690nm、Zn 213.856nm为分析谱线,采用标准加入法(MSA)配制标准溶液系列消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、钴、铬、铜、铁、镁、锰、镍、铅、硅和锌,从而建立了铍中11种元素的测定方法。各待测元素校准曲线的线性相关系数均大于0.9995;各元素的定量限为0.001%~0.002%。实验方法用于测定铍样中铝、钴、铬、铜、铁、镁、锰、镍、铅、硅和锌,结果的相对标准偏差(RSD,n=10)为0.63%~8.6%,回收率为90%~110%。按照实验方法测定铍样中上述11种元素,测定结果与采用GJB 2513A—2008测定的结果吻合。 相似文献
14.
铍中铝、钴、铬、铜、铁、镁、锰、镍、铅、硅和锌等11种杂质元素含量的准确测定,是判定铍材是否合格的重要指标。目前,上述杂质元素的测定标准为GJB 2513A—2008《铍化学分析方法》,方法分别采用光度法和原子吸收光谱法对各元素逐一测定,测定周期很长。试验采用盐酸-硝酸溶解样品,选择Al 308.215nm、Co 230.786nm、Cr 284.325nm、Cu324.754nm、Fe 261.187nm、Mg 285.213nm、Mn 260.569nm、Ni 221.647nm、Pb182.205nm、Si 250.690nm、Zn 213.856nm为分析谱线,采用标准加入法(MSA)配制标准溶液系列消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、钴、铬、铜、铁、镁、锰、镍、铅、硅和锌,从而建立了铍中11种元素的测定方法。各待测元素校准曲线的线性相关系数均大于0.999 5;各元素的定量限为0.001%~0.002%。实验方法用于测定铍样中铝、钴、铬、铜、铁、镁、锰、镍、铅、硅和锌,结果的相对标准偏差(RSD,n=10)为0.63%~8.6%,回... 相似文献
15.
样品经碱熔熔和HCl+HNO3浸取后,采用电感耦合等离子体原子发射光谱法测定钒铁中Al、Si、P、Mn、Ni、Cr、Cu、Ti、As含量。确定了最佳的仪器工作条件及分析谱线,利用基体匹配消除干扰。方法各元素校准曲线的线性关系良好,检出限均小于0.03mg/L,加标回收率在97.0%-105.3%之间,相对标准偏差均小于9%。 相似文献
16.
碳化硅是应用最广泛、最经济的一种耐火原料,由于碳化硅贸易活跃,需要对表面杂质成分进行快速、准确的测定。样品采用氢氟酸、硝酸溶解,高氯酸冒烟至近干,再使用盐酸溶解可溶性盐类,通过过滤使得被测成分与碳化硅分离,选择Fe 259.939nm、Al 394.401nm、Ca 317.933nm、Mg 285.213nm、K 766.490nm、Na 589.592nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铁、铝、钙、镁、氧化钾、氧化钠,从而建立了使用ICP-AES测定高含量碳化硅表面铁、铝、钙、镁、氧化钾、氧化钠等杂质成分的方法。铁在0.020%~0.50%,铝、钙在0.020%~0.20%,镁、氧化钾、氧化钠在0.0020%~0.020%范围内校准曲线呈线性,线性相关系数均不小于0.9998。方法检出限为0.000042%~0.00064%(质量分数)。实验方法用于测定碳化硅样品表面铁、铝、钙、镁、氧化钾、氧化钠,结果的相对标准偏差(RSD,n=10)为1.9%~9.5%。按照实验方法测定碳化硅样品表面铁、铝、钙、镁、氧化钾、氧化钠,测定值与国家标准方法的测定结果相吻合。 相似文献
17.
样品采用盐酸溶解后,以电感耦合等离子体原子发射光谱法(ICP-AES)同时测定了偏钒酸铵中10种微量杂质元素铝、铁、硅、磷、铅、砷、铬、钾、钠、钙的含量。由于样品溶液中含有2.18 g/L钒和0.78 g/L铵根,故实验重点考察了2.18 g/L钒标准溶液、0.78 g/L铵根标准溶液及两者的混合标准溶液,以及10 mg/L各待测元素标准溶液、水和5%(V/V)盐酸试剂空白的谱线重叠与连续背景叠加等光谱干扰以及基体效应对待测元素测定的干扰影响情况。结果表明:该质量浓度的铵根对测定无影响,部分待测元素灵敏谱线受到钒基较严重的光谱重叠或旁峰干扰;高质量浓度钒的基体效应、连续背景叠加等影响因素导致铝、铁、硅、磷、铅、砷、铬、钙的谱线强度增加,对其产生正干扰,同时高质量浓度钒的基体效应也导致钾、钠的谱线强度降低,对其产生负干扰。为此实验方法采用基体匹配和同步背景校正相结合的校正措施消除了高钒基体影响,同时试验优选了未受光谱干扰的各待测元素分析谱线及其背景校正和检测区域。结果表明,背景等效浓度为-0.000 3%(Na)~0.000 4%(Ca);铝、铁、硅、磷、铅、砷、铬、钙在0.001%~0.60%(质量分数)范围内,钾、钠在0.005%~0.60%(质量分数)范围内,其质量分数与其对应的发射强度呈线性,各元素校准曲线的相关系数均不小于0.999;方法中各元素检出限为0.000 1%~0.000 6%。按照实验方法测定两个偏钒酸铵样品中铝、铁、钾、钠、硅、磷、铅、砷、铬、钙,结果的相对标准偏差(RSD,n=8)分别为小于10%(质量分数为0.001%~0.010%),小于7%(质量分数为0.010%~0.050%),小于3%(质量分数大于0.050%);实验方法用于测定4个偏钒酸铵样品中铝、铁、硅、磷、铅、砷、铬、钾、钠、钙,结果与电感耦合等离子体质谱法(ICP-MS)测定结果相吻合。 相似文献