首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
酸法制备木薯微孔淀粉的工艺及吸附性研究   总被引:5,自引:0,他引:5  
利用盐酸对木薯淀粉进行处理,可以得到一种具有吸附功能的微孔淀粉载体。实验证明:木薯微孔淀粉对柠檬黄色素、油脂的吸附性能高于原淀粉对柠檬黄色素、油脂的吸附性能;盐酸制备木薯微孔淀粉的最佳工艺条件是:盐酸用量1.5%,温度35℃,反应时间10h。  相似文献   

2.
木薯微孔淀粉的制备及性质研究   总被引:6,自引:0,他引:6  
刘文宏  袁怀波  王宇 《食品科学》2006,27(10):265-268
以木薯淀粉为原料,探讨α-淀粉酶用量、反应温度、反应pH值和反应时间等因素对其微孔化反应的影响,并对微孔淀粉的吸水率、吸油率和X射线衍射以及扫描电子显微镜结构表征进行了研究。  相似文献   

3.
交联微孔淀粉的制备   总被引:12,自引:1,他引:12  
淀粉通过交联处理后 ,再进行酶解制得交联微孔淀粉。研究表明 ,最佳工艺条件为 :交联剂用量 0 4μL/ g ,淀粉乳浓度 0 .1~ 0 .2g/mL ,温度 5 0℃ ,pH 4 0 ,酶用量 2 0 % (按淀粉质量计 ) ,反应时间 1 2h。交联后酶解能提高微孔淀粉的结构性能和吸附性能。  相似文献   

4.
以α-淀粉酶和糖化酶复合酶解制备微孔木薯淀粉,研究了加酶量、反应温度、pH值、时间等因素对微孔淀粉水解率和吸油率的影响。得出制备微孔木薯淀粉的最佳条件为:加酶量1%,酶配比(α-淀粉酶:糖化酶)1:2,反应温度55℃,pH值5.5,反应时间16h,所得微孔淀粉的水解率为55.71%,吸油率为92.18%,并借助于偏光显微镜、扫描电子显微镜(SEM)对产品的显微结构进行表征。  相似文献   

5.
机械活化木薯淀粉及其乙酰化淀粉的消化性能研究   总被引:4,自引:0,他引:4  
采用In-Vitro 消化模型和美国谷物化学协会(AACC)的76-13 标准方法,以消化速度和抗酶解淀粉含量为评价指标,研究机械活化淀粉及其乙酰化变性处理产品的消化性能和抗酶解性能。结果表明,机械活化对木薯淀粉颗粒的消化性能有显著的强化作用,活化时间越长,消化速率越大,抗酶解淀粉的含量越低。主要原因是机械活化使木薯淀粉紧密的颗粒表面及晶体结构受到破坏,结晶度下降,提高了淀粉颗粒对酶的敏感性,增加反应活性。活化淀粉经乙酰化变性可加快其颗粒的消化性能,降低其糊的消化性能,破坏和阻止抗酶解淀粉的形成,并随取代度提高,淀粉颗粒和糊的消化速度呈下降趋势,抗酶解淀粉含量降低。  相似文献   

6.
利用盐酸水解制备木薯微孔淀粉。研究盐酸浓度、反应时间、反应温度对微孔淀粉吸附性能的影响,并通过扫描电镜(SEM)、比表面积研究(BET)、热失重分析(TGA)等手段研究微孔淀粉的结构。结果表明:盐酸处理木薯淀粉后形成微孔,且木薯微孔淀粉的比表面积远远大于木薯淀粉的比表面积。盐酸水解木薯淀粉的最优化工艺为:4.0%HCl、反应温度45℃、反应时间为8h。  相似文献   

7.
测定了木薯淀粉、木薯羟丙基淀粉、羟丙基交联淀粉、醋酸酯淀粉、醋酸酯交联淀粉的冻融稳定性、透光率、凝沉、耐盐性、耐酸性、糊化特性等性质。实验结果表明:经过变性的木薯淀粉和原木薯淀粉有很大的不同,经过羟丙基化、羟丙基交联、醋酸酯化、醋酸酯交联后,分别引入了羟丙基、交联键、乙酰基等,使其具有较强的冻融稳定性,具有较高的透明度、耐盐性、耐酸性。据RVA分析,各种变性淀粉糊液性质较原淀粉有较大的提高。经过交联后糊液稳定性较原淀粉、羟丙基及醋酸酯淀粉有较大程度的提高,因此具有更为广阔的应用性。   相似文献   

8.
以木薯淀粉为原料,采用沉淀法制备木薯纳米淀粉,探究淀粉添加量、超声波振幅、乙醇体积分数、搅拌时间对纳米淀粉粒径的影响,同时分析了木薯纳米淀粉的基本特质和乳化性能。结果表明,淀粉添加量5%(质量分数)、超声波振幅70%、乙醇体积分数60%、搅拌时间15 min时,粒径最小为75.91 nm。核磁共振氢谱、扫描电镜、透射电镜分析表明,沉淀法成功制备木薯纳米淀粉,淀粉基本化学结构不变;与原淀粉相比,用纳米淀粉为乳化剂制备的Pickering乳液粒径较小,乳化活性、乳化稳定性及贮藏稳定性均得到显著提升。该研究结果可为木薯淀粉应用提供参考依据。  相似文献   

9.
采用搅拌球磨机对木薯淀粉进行机械活化,以活化60 min木薯淀粉为原料、环氧氯丙烷为交联剂制备交联淀粉;探讨机械活化时间、反应时间、反应温度、交联剂用量、体系pH值对木薯淀粉交联反应影响,通过正交实验优化制备条件。结果表明,机械活化对木薯淀粉交联反应有显著强化作用;最优制备条件为:反应时间80 min、反应温度35℃、pH=10、环氧氯丙烷用量0.10 ml;在此条件下,制得交联淀粉沉降积为0.226 ml。  相似文献   

10.
甘薯微孔淀粉制备技术及吸附性能研究   总被引:7,自引:0,他引:7  
用淀粉糖化酶、α-淀粉酶、普鲁兰酶水解甘薯淀粉制备一种具有吸附功能微孔淀粉载体。研究表明,淀粉糖化酶对生甘薯淀粉作用力最强;淀粉糖化酶水解制备甘薯微孔淀粉最佳工艺条件是:温度45℃,pH值4,酶用量为1%,时间24小时,水解率为51.52%。微孔淀粉对色素、水溶性维生素、油脂的吸附能力远远高于原淀粉。通过交联反应能明显提高微孔淀粉的结构性能和吸附性能。  相似文献   

11.
以水解率为指标,研究α-淀粉酶与糖化酶复合水解绿豆淀粉制备微孔淀粉工艺条件,通过单因素和正交试验确定酶解最佳工艺条件:α-淀粉酶:糖化酶=1:3,酶用量2.0%,时间20 h,温度42℃,pH4.2。经吸水、吸油率测试,对酶解前后绿豆淀粉进行性质分析表明,微孔淀粉吸水、吸油能力明显大于原淀粉。  相似文献   

12.
微孔淀粉制备工艺研究   总被引:6,自引:0,他引:6  
使用糖化酶、淀粉酶部分的降解玉米淀粉制备微孔淀粉,通过对吸油率的测量,研究微孔淀粉吸油率随着糖化酶、淀粉酶不同的浓度、时间和pH值的变化规律,并采用正交试验优化制备微孔淀粉的时间、温度、pH值和淀粉酶用量等工艺条件.  相似文献   

13.
应用木薯淀粉为原料,环氧氯丙烷为交联剂,制备交联淀粉,得到适宜的制备条件为:NaOH用量为淀粉干重的1.2%,环氧氯丙烷用量为淀粉干重的0.42%,反应温度为50℃,时间为3h.经环氧氯丙烷交联后,木薯交联淀粉有良好的抗老化性能力、抗酸性能力、抗剪切性能和一定的透明度.  相似文献   

14.
机械活化木薯淀粉干法制备氧化淀粉的研究   总被引:10,自引:0,他引:10  
采用搅拌球磨机对木薯淀粉进行机械活化,以不同活化时间的木薯淀粉为原料、CuSO4为催化剂、H2O2为氧化剂干法制备氧化淀粉,并以羧基含量为评价指标,分别考察了活化时间、反应时间、反应温度、氧化剂用量、催化剂用量、pH值、体系含水量等因素对木薯淀粉氧化反应的影响.实验结果表明,机械活化对木薯淀粉的氧化反应有显著的强化作用,活化时间越长,木薯淀粉被氧化的程度越深,羧基含量越高.活化1 h的样品在制备条件为反应时间120 min、H2O2与淀粉的摩尔比0.586、催化剂CuSO4在淀粉中的质量分数0.03%、反应温度50℃、体系含水量27.37%、体系pH值等于5时制得的氧化淀粉羧基含量为0.81%,而在相同条件下,由原木薯淀粉制得的氧化淀粉羧基含量仅为0.26%.  相似文献   

15.
酶法制备玉米微孔淀粉比较研究   总被引:5,自引:0,他引:5  
对葡萄糖淀粉酶、α-淀粉酶及普鲁兰酶水解玉米淀粉制备玉米微孔淀粉进行比较研究。研究表明:葡萄糖淀粉酶水解作用最强,α-淀粉酶和普鲁蓝酶的水解作用最弱,但若选择葡萄糖淀粉酶与α-淀粉酶复配使用能提高其水解率。水解率与其吸附量和吸油率不成正相关关系,淀粉水解率控制在50%为宜。  相似文献   

16.
交联酯化木薯淀粉制备条件的研究   总被引:1,自引:0,他引:1  
研究木薯淀粉经三偏磷酸钠交联和琥珀酸酐酯化修饰处理后热糊黏度特性的变化.指出交联剂用量、交联时间、交联pH值、酯化剂用量、酯化时间、酯化pH值和反应温度对结果的影响,并得出获得高黏度淀粉的最佳试验条件为:交联剂用量为0.02%;交联时间为3.3 h;交联反应pH值为9.7;酯化剂用量为2.4%;酯化时间为2.7 h;酯化反应pH为9.8;反应温度为34.8℃.  相似文献   

17.
研究了制备交联羧甲基玉米淀粉和交联酯化木薯淀粉的最佳工艺条件及影响取代度的关键因素,并测定了两种复合变性淀粉的冻融稳定性、透光率、膨胀度等特性.结果表明:两种复合变性淀粉的冻融稳定性、膨胀度、透光率等性能均优于原淀粉;交联酯化木薯淀粉具有良好的絮凝效果可用于污水处理.  相似文献   

18.
非晶颗粒态玉米淀粉制备方法   总被引:5,自引:0,他引:5  
系统地报道了水分散体系高温溶胀、常温碱分散体系强碱溶胀作用非晶颗粒态玉米淀粉制备方法,采用偏光显微镜对多晶态向非晶态的变化进行了确认,提出在一定条件下,高交联玉米淀粉可以由原淀粉多晶颗粒态制备成只含无定形结构的非晶颗粒态淀粉。  相似文献   

19.
Microfluidization has been applied to modify starch granules. The study was conducted to investigate the effect of microfluidization on the structure and thermal properties of cassava starch–water suspension (20% w/w). The means of optical microscopy, SEM, FTIR spectroscopy, XRD, and DSC were applied to analyze the changes in microstructure, crystallinity, and thermal property. Microscopy observations revealed that native starch granules were oval, round, and truncated in shape. After the microfluidization treatment, a bigger starch granule was partially gelatinized, and a gel‐like structure was formed on a granular surface. No significant difference in XRD patterns of the samples were observed and all samples exhibited A‐type allomorph. Crystallinity decreased with the pressure. Sample treated at 150 MPa contains 17.1% crystalline glucan polymer, lower than that of native granules which have crystallinity of about 25.8%. A lower crystallinity means poor order of crystalline glucan polymer structure in starch granules. The disruption of crystalline order within the granule was also observed by FTIR measurement. Thermal analysis using DSC indicated that the microfluidization treatment brought about a significant decrease of melting enthalpy. The gelatinization enthalpy was 12.0 and 3.0 J/g for the native sample and samples treated under the 150 MPa, respectively. The results indicate that high‐pressure microfluidization process induced the gelatinization of cassava starch, which is evaluated by a percentage of the degree of gelatinization, due to a pronounced decrease with increasing microfluidizing pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号