首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we applied a new route to synthesize magnetic iron oxide nanoparticles into alginate polymer for future application as drug delivery system activated by magnetic external stimuli. Calcium-alginate was used to encapsulate iron oxide nanoparticles, and as scaffold for particle nucleation and its influence on particles size and magnetic properties were studied. The iron oxide mean sizes were between 4.3 and 9.5 nm. Iron is dispersed throughout the polymer matrix mainly as iron oxide particles, and a small fraction as iron (III) occupying calcium sites in the polymer network. The temperature dependence of the Mössbauer spectra is typical of superparamagnetic particles in agreement with the magnetic susceptibility data.  相似文献   

2.
Submicron iron particles were obtained by the reduction of co-precipitated superparamagnetic iron oxide nanoparticles under hydrogen atmosphere. The reduction was carried out at the temperatures ranging from 200 to 1000 °C. The magnetic properties were investigated in accordance with the structural properties. According to the X-ray diffraction patterns, the increase of crystallization was followed by the conversion from iron oxide to iron and also the particle size increased as the reduction temperature increased. Morphology observed by transmission electron microscope showed that the particles were individually seen at low temperatures; however, they stacked together and became larger at high temperatures. Magnetic measurements with a vibrating sample magnetometer disclosed that the saturation magnetization steadily increased with increasing temperature and almost stabilized at 800 °C. Highest saturation magnetization obtained by the reduction process is ~211 emu/g, which is close to that of bulk iron. It is disclosed that, at all temperatures, saturation magnetizations obtained from magnetic measurements were found to be compatible with the structural changes caused by reduction temperature.  相似文献   

3.
Fe2O3-SiO2 nanocomposites were prepared by a sol-gel method using various evaporation surface to volume (S/V) ratios ranging from 0.03 to 0.2. The Fe2O3-SiO2 sols were gelated at various temperatures ranging from 50 degrees C to 70 degrees C, and subsequently they were calcined in air at 400 degrees C for 4 hours. The structure and the magnetic properties of the prepared Fe203-SiO2 nanocomposites were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA), and vibrating sample magnetometer (VSM) measurements. The gelation temperature of the Fe2O3-SiO2 sols influenced strongly the particle size and crystallinity of the maghemite nanoparticles. It was observed that the particle size of maghemite nanoparticles increased with the increasing of the gelation temperature of the sols, which may be due to the agglomeration of the maghemite particles at elevated temperatures inside the microporosity of the silica matrix during the gelation process, and the subsequent calcination of these gels at 400 degrees C resulted in the formation of large size iron oxide particles. Magnetization studies at temperatures of 10, 195, and 300 K showed superparamagnetic behavior for all the nanocomposites prepared using the evaporation surface to volume ratio (S/V) of 0.1, 0.2, 0.09, and 0.08. The saturation magnetization, Ms, values measured at 10 K were 5.5, 8.5, and 9.5 emu/g, for the samples gelated at 50, 60, and 70 degrees C, respectively. At the gelation temperature of 70 degrees C, gamma-Fe2O3 crystalline superparamagnetic nanoparticles with the particle size of 9 +/- 2 nm were formed in 12 hours for the samples prepared at the S/V ratio of 0.2.  相似文献   

4.
The rapid mechanochemical synthesis of nanocrystalline CuFeS2 particles prepared by high-energy milling for 60?min in a planetary mill from copper, iron and sulphur elements is reported. The CuFeS2 nanoparticles crystallize in tetragonal structure with mean crystallite size of about 38?±?1?nm determined by XRD analysis. HRTEM study also revealed the presence of nanocrystals with the size of 5–30?nm with the tendency to form agglomerates. The Raman spectrum confirms the chalcopyrite structure. Low temperature magnetic data for CuFeS2 support the coexistence of antiferromagnetic and paramagnetic spin structure. Moreover, the hysteresis loops taken at temperatures from 5?K to 300?K revealed a presence of very small amount of ferromagnetic phase, which seems to be associated with the non-consumed elemental Fe in as-prepared nanoparticles. The optical band gap of CuFeS2 nanoparticles has been detected to be 1.05?eV, larger than band gap of the bulk material. The wider gap possibly resulted from the nano-size effect. Photoresponses of CuFeS2 nanoparticles were confirmed by I-V measurements under dark and light illumination. It was demonstrated that mechanochemical synthesis can be successfully employed in the one step preparation of nanocrystalline CuFeS2 with good structural, magnetic, optical and electrooptical properties.  相似文献   

5.
A facile sonochemical approach was applied for the large scale synthesis of iron oxide magnetic nanoparticles (NPs) using inexpensive and non-toxic metal salts as reactants. The as-prepared magnetic iron oxide NPs has been characterized by XRD, TEM, EDS, and VSM. X-ray diffraction (XRD) and EDS analysis revealed that Fe3O4 NPs have been successfully synthesized in a single reaction by this simple method. Transmission electron microscopy (TEM) data demonstrated that the particles were narrow range in size distribution with 11 nm average particle size. Moreover, TEM measurements also show that the synthesized nanoparticles are almost spherical in shape. The magnetization curve from vibrating sample magnetometer (VSM) measurement shows that as-synthesized NPs were nearly superparamagnetic in magnetic properties with very low coercivity, and magnetization values were 80 emu/g, which is very near to the bulk value of iron oxide. The estimated value of mass susceptibility of as-synthesized nanoparticles is Xg = 5.71 × 10− 4 m3/kg.  相似文献   

6.
Passivated iron nanoparticles (10-30 nm) have been synthesized by laser pyrolysis of a mixture of iron pentacarbonyl and ethylene vapors followed by controlled oxidation. The nanoparticles show a well-constructed iron-iron oxide core-shell structure, in which the thickness and nature (structure similar to maghemite, gamma-Fe2O3) of the shell is found to be independent of the initial conditions. On the other hand, the composition of the core is found to change with the particle size from the alpha-Fe structure to a highly disordered Fe phase (probably containing C atoms in its structure). The dependence of the magnetic properties on the particle size, iron oxide fraction, and temperature was also investigated. In the case of smaller particles, the magnetic data indicate the existence at low temperature of a large exchange anisotropy field, the magnitude of which increases with decreasing temperature in correspondence with the freezing of magnetic moments in the oxide shell.  相似文献   

7.
Iron oxide nanoparticles were coprecipitated in air medium using different sodium hydroxide (NaOH) concentrations, and their structural and magnetic properties were studied. It was observed that the precipitation of superparamagnetic iron oxide nanoparticles could be achieved above a critical NaOH concentration. This was followed by the investigation of the effect of the stirring rate on the structural and magnetic properties of the nanoparticles precipitated at 8.5?M NaOH and over. Morphological observation made by a transmission electron microscope (TEM) showed that the particle size of iron oxide nanoparticles was around 7.5?nm. Magnetization curves measured by a vibrating sample magnetometer showed zero coercivity indicating that the samples are superparamagnetic and the highest saturation magnetization (70.4?emu/g) was obtained at the stirring rate of 1100?rpm. The mean particle sizes of iron oxide nanoparticles calculated from the magnetization data are found to be consistent with the particle sizes obtained from the TEM images.  相似文献   

8.
In this work, we report a detailed study of the formation of hollow nanostructures in iron oxides. Core/shell Fe/Fe-oxide nanoparticles were synthesized by thermal decomposition of Fe(CO)(5) at high temperature. It was found that 8 nm is the critical size above which the particles have a core/shell morphology, whereas below this size the particles exhibit a hollow morphology. Annealing the core/shell particles under air also leads to the formation of hollow spheres with a significant increase in the average particle size. In the case of the thermally activated Kirkendall process, the particles do not fully transform into hollow structures but many irregular shaped voids exist inside each particle. The 8 nm hollow particles are superparamagnetic at room temperature with a blocking temperature of 70 K whereas the core/shell particles are ferromagnetic.  相似文献   

9.
The current article reports on providing surface modification of magnetic nanoparticles with gold to provide stability against aggregation. Gold-coated magnetite nanoparticles were synthesised to combine both magnetic as well as surface plasma resonance (SPR) properties in a single moiety. The nanocomposites were produced by reduction (using ascorbic acid) of gold chloride on to the surface of iron oxide nanoparticles. Ascorbic acid not only acts as a reducing agent, but also the oxidised form of ascorbic acid i.e. Dehydro-ascorbic acid acts as a capping agent to impart stability to as synthesised gold-coated iron oxide nanocomposites. The synthesised nanocomposite was monodispersed with a mean particle size of around 16 nm and polydispersity index of 0.190. X-ray diffraction analysis confirms presence of gold on the surface of magnetite nanoparticles. The synthesised nanocomposites had a total organic content of around 3.2% w/w and also showed a shifted SPR peak at 546 nm as compared to gold nanoparticles (528 nm). Both uncoated and gold-coated magnetite exhibited superparamagnetic behaviour at room temperature. Upon coating with gold shell, saturation magnetisation of iron oxide nanoparticles decreases from 42.806 to 3.54 emu/gram.  相似文献   

10.
Copper oxide nanoparticles were produced by direct plasmachemical synthesis in a plasma arc discharge of low pressure. The formation of CuO nanoparticles with an average size of 12 nm and narrow size distribution intervals was determined by using the x-ray diffraction analysis and TEM microscopy methods. It was defined by using a vibration magnetometer and a SQUID magnetometer, that the magnetic properties of CuO nanoparticles with such size were extremely different from the magnetic properties of bulk antiferromagnetic CuO. Structural defects caused the formation of a ferromagnetic state, remaining at least up to the room temperature. The temperature of corresponding antiferromagnetic ordering was significantly decreased (down to ~ 100 K). Meanwhile, some of the copper surface spins showed a spin-glass behavior at low temperatures.  相似文献   

11.
The present study follows a novel strategy for the preparation of superparamagnetic nanoparticles of cross-linked starch impregnated homogeneously with nanosized iron oxide. The prepared magnetic nanoparticles were characterized by infra-red (FTIR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction and magnetization studies. The size of the magnetic polymeric particles was found to lie in the range of 20–80 nm, and they exhibited superparamagnetic properties. The particles were allowed to swell in phosphate buffer saline (PBS) and the influence of factors such as chemical composition of nanoparticles, pH and temperature of the swelling bath and applied magnetic field was investigated on the water intake capacity of the nanoparticles. The prepared nanoparticles showed potential to provide a possible option for controlled and targeted delivery of anticancer drugs, applying external magnetic field.  相似文献   

12.
快速热解法制备炭包覆纳米金属磁性颗粒(英文)   总被引:1,自引:0,他引:1  
以简单金属前躯体为原料通过快速热解法制备炭包覆纳米金属磁性颗粒,通过透射电镜、X-射线衍射、热重-示差扫描同步热分析及振动样品磁强计等对产物形貌、结构、成分与磁性能进行表征。结果表明:采用该方法制备的炭包覆纳米金属磁性颗粒形状为近球形颗粒,粒径均一,其中炭包覆镍纳米磁性颗粒的粒径集中在10nm~30nm范围,炭包覆铁纳米磁性颗粒粒径则在50nm~60nm范围;所制炭包覆纳米金属磁性颗粒在室温下具有顺磁性,其磁性能随金属颗粒含量的变化而改变。该方法有望发展成一种工艺简单,可进行连续工业化生产炭包覆纳米金属磁性颗粒的方法。  相似文献   

13.
Iron oxide nanoparticles were synthesized by co-precipitation in air atmosphere at different temperatures and their structural and magnetic properties were investigated. The mean particle sizes of iron oxide nanoparticles were calculated from the X-ray diffraction (XRD) patterns using the Scherrer equation. Fourier transform infrared spectroscopy analysis exhibited the vibration bands at 563 cm?1 and 620 cm?1 confirming the formation of Fe3O4 and ??-Fe2O3, respectively. Morphological observation was made by a transmission electron microscope and the particle size of iron oxide nanoparticles was found to be around 9 nm which is consistent with the particle size calculated according to the XRD patterns. It was observed that the intensity of the peaks in the patterns and crystallinity increased as the temperature increased. Magnetization curves showed zero coercivities indicating that the samples are superparamagnetic.  相似文献   

14.
Iron thin films have been grown by DC magnetron sputtering using Si(100) wafers as substrates, and then oxidized in a well-controlled oxygen atmosphere in the vacuum chamber. Film thickness is about 50 nm, and grains forming these samples do not exceed 20 nm. In order to control structural properties such as size and shape of these grains, growth conditions can be modified, like deposition rate or substrate temperature, varying from 150 to 300 K. Two sets of samples have been prepared considering deposition rate: (i) films grown at 0.6 nm/min and (ii) at 1.2 nm/min. In order to prevent iron films from natural oxidation, all the sample series were covered with a gold layer. Analysis of their magnetic behaviour shows a strong dependence on grain size and temperature, resulting in a more effective oxidation for samples prepared at higher deposition rates and lower substrate temperatures, which behaves as a Fe/Fe oxide granular system.  相似文献   

15.
The selected area electron diffraction (SAED) pattern of magnetic iron oxide core/gold shell nanoparticles has been studied. For the composite particles with mean size less than 10 nm, their SAED pattern is found to be different from either the pattern of pure Fe oxide nanoparticles or that of pure Au particles. Based on the fact that the ring diameters of these composite particles fit the characteristic relation for the fcc structure, the Au atoms on surfaces of the concerned particles are supposed to pack in a way more tightly than they usually do in pure Au nanoparticles. The driving force for this is the coherency strain which enables the shell material at the heterostructured interface to adapt the lattice parameters of the core.  相似文献   

16.
Surface modification of magnetic nanoparticles by organic surfactants is known to provide them with solubility in organic solvents (ferrofluids), which undoubtedly is an important property in several applications and studies. In this report, the main interest is focused on structural, magnetic and adsorption properties of iron oxide nanoparticles that are derived under water/toluene biphase conditions in the presence of oleic acid or oleylamine as the capping agents. The surfactants provide them with excellent stability and solubility in organic solvents like toluene or chloroform. Furthermore, by adding the appropriate surfactant or altering the temperature of the aqueous phase at the initial stage of the reaction we achieve a size control of the nanoparticles within the range 6–18 nm. The presence of capping agents or high reaction temperatures favours the formation of smaller nanoparticles. The adsorption of the surfactants (chemisorption) was identified with FT-IR spectroscopy, while Mössbauer studies have been performed to representative samples in order to identify the presence of either γ-Fe2O3 or Fe3O4, depending on the reaction temperature. Finally, the magnetic properties of representative samples have been studied at 5 K and room temperature.  相似文献   

17.
In this paper, we elucidate several specific magnetic properties of Fe 3 O 4nanoparticles synthesized by coprecipitation method. The characterizations by X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) showed the particles to be of spinel structure and spherical shapes whose diameter could be controlled in the range from 14 to 22 nm simply by adjusting the precursor salts concentration and coprecipitation temperature. Magnetic properties of the Fe 3 O 4 nanoparticles measured by using vibration sample magnetometer (VSM) indicated the saturation magnetization and blocking temperature to increase with the particles size. Fe 3 O 4 nanoparticles with crystal size smaller than 22 nm exhibits superparamagnetic behavior at room temperatures. Characteristic magnetic parameters of the particles including saturation magnetization, effective anisotropy constant, and magnetocrystalline anisotropy constant have been determined. The observed decrease of saturation magnetization was explained on the base of core-shell model. A simple analysis indicated that the shell thickness decreases with an increase in particle size.  相似文献   

18.
Iron nanosheet has been prepared in the presence of N-Methylaniline by solvothermal method. The structural property of the sample has been studied by X-ray diffraction and transmission electron microscopy. The magnetic properties have been extensively investigated by hysteresis loops and temperature-dependent magnetization curves. XRD result exemplifies that the as-prepared product has been identified as iron with body centered cubic structure. TEM observation showed that the as-prepared product composed of sheet-like nanostructure with size was around 25 nm. FTIR result suggests that the N-Methylaniline molecules are on the surface of the Fe Nano sheet. Magnetic measurements showed that the prepared iron nanosheet was ferromagnetic behavior at 300 K. Compared with bulk iron, Fe nanosheet exhibits significant increase in coercive force due to the presence of shape anisotropy. Moreover, the temperature dependent magnetization curves show no blocking temperature up to 300 K, which indicates the prepared sheet, is ferromagnetic character at room temperature.  相似文献   

19.
采用均相沉淀法制备了氧化锌(ZnO)前驱体,通过煅烧前驱体制备了不同粒径的ZnO纳米颗粒,并在此基础上制备了ZnO/环氧纳米复合材料.借助TG、XRD和TEM等手段对纳米ZnO进行了表征,采用UV-VIS研究了ZnO含量、颗粒粒径等因素对复合材料光学性能的影响.研究结果表明:在紫外光区,提高ZnO的含量和选择ZnO最佳粒径,可以改善对紫外光的屏蔽效果;随着ZnO粒径的减小,ZnO对紫外光的屏蔽存在明显的蓝移现象,因此选择合适的粒径尤为重要.在可见光区,ZnO含量和颗粒粒径的影响相似,当ZnO含量低于0.07wt%、粒径小于27nm时复合材料的透过率几乎没有变化,增加含量或增大粒径透过率则随之下降.当ZnO的粒径为27nm时,添加0.07wt%的ZnO所制备的ZnO/环氧纳米复合材料具有优异的光学性能:在保持可见光区高透明性的同时又能够对紫外光区有良好的屏蔽效果,能够满足LED封装等光学器件的需要.  相似文献   

20.
Ni80Fe20 permalloy nanoparticles with narrow size distribution and homogeneous composition have been prepared by the polyol processing at 180 degrees C for 2 h and their particle sizes can be tunable in the size range of 20-440 nm by proper addition of K2PtCI4 agent. X-ray diffraction results show that the NiFe nanoparticles are of face centered cubic structure. The addition of K2PtCl4 does not affect the composition of NiFe NPs but decreases the particle size remarkably. Both saturation magnetization and coercivity of the as-prepared NiFe nanoparticles decrease with decreasing particle size. Annealed at 280 degrees C, however, the saturation magnetization of various sized NiFe nanoparticles increases drastically and approaches to the bulk for the -440 nm NiFe particles, and a maximum coercivity (-270 Oe) happens at a critical size of -50 nm. The magnetic property dependency of these NiFe nanoparticles on annealing has been discussed by considering the surface chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号