首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
壳聚糖用于活性污泥絮凝沉降条件的研究   总被引:9,自引:0,他引:9  
王吉龙  郦和生 《石化技术》1998,5(4):222-223,226
对壳聚糖用于活性污泥絮凝沉降的pH值适用范围,投加浓度进行了研究,并与常规絮凝剂聚丙烯酰胺(PAM)和聚合氯化铝(PAC)进行了比较,结果表明,壳聚糖作为活性污泥絮凝剂,投加量为3mg/L时,即有即好效果,pH值适用范围为5-8,pH6,为最佳值,在活性污泥pH7.6(自然值)壳聚糖与阳离子聚丙烯酰胺在实验浓度范围内效果基本相当,且优于20mg/L聚合氯化铝。  相似文献   

2.
用驱油效率实验优选矿场应用的聚合物分子量及用量   总被引:5,自引:0,他引:5  
用不同分子量,不同浓度的聚丙烯酰胺(HPAM)溶液在人造岩心上进行较系统的驱油实验。结果表明(1)分子量越高,或浓度越大,溶液的增粘性就越强,驱油效率也越高;(2)当分子量和溶液粘度相同时,驱油效率随残余阻力系数的增加而提高;(3)当注入溶液的孔隙体积一样时,每吨聚合物的增油量随溶液浓度的增加而下降,以岩心做的驱油效率实验为基础,用简便方法优选出适合河南油田的聚合物分子量为1430万,用量主320  相似文献   

3.
用不同分子量、不同浓度的聚丙烯酰胺(HPAM)溶液在人造岩心上进行较系统的驱油实验,结果表明:(1)分子量越高,或浓度越大,溶液的增粘性就越强,驱油效率也越高;(2)当分子量和溶液粘度相同时,驱油效率随残余阻力系数的增加而提高;(3)当注入溶液的孔隙体积一样时,每吨聚合物的增油量随溶液浓度的增加而下降。以岩心做的驱油效率实验为基础,用简便方法优选出适合河南油田的聚合物分子量为1430万,用量为320PV·mg/L。在河南油田面积为3.01km2的聚合物驱矿场先导试验中,经三年零二个月的试验,全区增油4.85×104t,提高采收率9.19%,每吨聚合物增油210t,取得了很好的经济效益。  相似文献   

4.
胶乳型高分子量聚丙烯酰胺的研制   总被引:1,自引:0,他引:1  
以两种丙烯酰胺(AM)水溶作为聚合单体,系统地考察了引发剂用量、聚合反应温度、体系pH值以及还原剂的滴加速率对胶乳型聚丙烯酰胺(PAM)分子量的影响。确定了制备胶乳型高分子量PAM的最佳工艺条件,得到产品的分子量可达800万以上。  相似文献   

5.
聚合物在多孔介质中水动力学滞留研究   总被引:6,自引:0,他引:6  
部分水解聚丙烯酰胺(HPAM)的分子量越高,满足流度控制所需要的HPAM的浓度就越低,HPAM用量就少。因此,矿场应用的HPAM的分子量有越来越高的趋势。但是,HPAM分子量越高,其在多孔介质中的滞留量就越易受到注入速度的影响。研究了高温(72℃)条件下,不同分子量的HPAM在天然岩心中的渗流特性,结果表明:在注入速度为15mL/h的条件下,低分子量的HPAM3330S的浓度剖面图基本对称,滞留量为19.5μg/g;高分子量的HPAMS525的浓度剖面图呈明显的前缘滞后和拖尾现象,滞留量为64.0μg/g。把S525溶液的注入速度从15mL/h提高到30mL/h,C/C0值随注入孔隙体积的增大先下降而后上升,滞留量增加了41.5μg/g;当C/C0值上升到1后再将注入速度提高到60mL/h,浓度剖面图特征与上述基本相同,滞留量又增加了45.0μg/g。3个流速下HPAMS525的总滞留量为137.7μg/g,呈现出典型的水动力学滞留现象,并且HPAM的分子量越高,岩心渗透率越小,水动力学滞留现象就越明显,滞留量越大。因此在实际应用时,应充分考虑到水动力学滞留现象的有利和不利的影响。图1表1参4(郭海莉摘  相似文献   

6.
胶态分散凝胶及其流变,渗流特性研究   总被引:25,自引:4,他引:21  
陈铁龙  张丽虹 《油田化学》1998,15(3):265-268,277
对胶态分散凝胶(CD胶)体系的形成,CD胶的流变性及岩心流动特性进行了室内研究,在本工作实验条件下,分子量等于大于1100万的聚合物(HPAM)的浓度为100-1000mg/L,pH值为5-7聚合物与交联剂(柠檬酸铝)之比为5:1-30:1时均能形成稳定的CD胶。与相同浓度聚合物溶液相比,CD胶的粘度较高,阻力系数和残余阻力系数较大,CD胶的粘度-剪切速率同线在宽剪速率范围内大体上为剪为变稀型,但  相似文献   

7.
�ۺ���/SDBS�����Һ�����о�   总被引:5,自引:0,他引:5  
恒定部分水解聚丙烯酰胺(HPAM)、聚乙烯吡咯烷酮(PVP)浓度时,PVP/SDBS混合溶液的粘度随SDBS浓度的增加在一浓度(C1)处陡然增大,到另一更高浓度(C2)后粘度不再增加,出现一个平台,相应混合溶液的表面张力曲线出现有两个明显的转折点T1和T2,T1处SBBS浓度与C1处SDBS浓度相同,SDBS浓度小于T1时,混合溶液表面张力低于单独SDBS溶液表面张力,从T开始,混合溶液表面张力小  相似文献   

8.
耐盐聚合物PAM104A与高含盐油藏聚合物驱油物理模拟   总被引:2,自引:0,他引:2  
马广彦 《油田化学》1995,12(4):353-357,352
在常温下令部分水解聚丙烯酰胺与二羟基化合物104A反应制得了耐盐聚合物PAM10A。研究了PAM104A的耐盐性、抗剪切性和热稳定性,考察了PAM104A溶液浓度、聚合物段塞尺寸和结构对驱油效率的影响。岩心驱油试验结果表明,PAM104A能满足高含盐、低渗透的马岭油田聚合物驱油的技术要求。  相似文献   

9.
油田在三次采油中,注碱液和注聚丙烯酰胺聚合物,对地面流程中管网和容器造成内腐蚀和结垢等影响,通过动态试验获得A3钢和20^#钢的腐蚀率。当碱液浓度为5%、pH值为11时,A3钢的腐蚀率为0.008mm/a,20^#钢腐蚀率为0.0112mm/a,均属“弱”级腐蚀。腐蚀原因系溶解氧和二氧化碳的作用。聚丙烯酰胺溶液浓度为1100ppm,pH值为11时,A3钢的腐蚀率为0.047mm/a,20^#钢的腐  相似文献   

10.
原油输送减阻技术与减阻效率   总被引:6,自引:1,他引:5  
郑文 《石油学报》1990,11(3):124-130
原油在管道中输送时,加入少量ppm的减阻剂,增输量可达到10%以上。用作减阻剂的油溶性聚合物,分子量一般高达几百万到上千万。按分子数计算,减阻剂在原油中占的比例微小,因此不会改变原油的粘度。减阻效率决定于聚合物在溶液中的形态,空间尺寸,聚合物的溶解性能以及使用减阻剂的技术。实验表明(1)减阻效率随减阻剂添加量而增加,但减阻剂浓度达到一定值后,减阻率提高缓慢;(2)流体的流速增加,使减阻效率显著增加,但对不同的聚合物影响结果不一样;(3)在管径相同的条件下,流体的雷诺数增加,减阻效率增加;(4)在一定范围内壁剪切应力增加,减阻率也随之增加,但过大的剪切力会使高聚物降解,分子量降低,减阻率下降;(5)原油中含微量水份会影响减阻率。当含水量超过一定值时,因聚合物溶解性不好,反而导致减阻剂失效。目前工业上使用的减阻剂品种主要是超高分子量的聚α—烯烃,在油中的添加量为φn×10ppm以内,使减阻率在20%左右,增输15%左右,可以明显增加经济效益。  相似文献   

11.
Partially hydrolyzed polyacrylamide (HPAM) as the main component of slickwater fracturing fluid is a shear-sensitive polymer, which suffers from mechanical degradation at turbulent flow rates. Five different concentrations of HPAM as well as mixtures of polyacrylamide/ xanthan gum were prepared to investigate the possibility of improving shear stability of HPAM. Drag reduction (DR) measurements were performed in a closed flow loop. For HPAM solutions, the extent of DR increased from 30% to 67% with increasing HPAM concentration from 100 to 1000 wppm. All the HPAM solutions suffered from mechanical degradation and loss of DR efficiency over the shearing period. Results indicated that the resistance to shear degradation increased with increasing polymer concentration. DR efficiency of 600 wppm xanthan gum (XG) was 38%, indicating that XG was not as good a drag reducer as HPAM. But with only 6% DR decline, XG solution exhibited a better shear stability compared to HPAM solutions. Mixed HPAM/XG solutions initially exhibited greater DR (40% and 55%) compared to XG, but due to shear degradation, DR% dropped for HPAM/XG solutions. Compared to 200 wppm HPAM solution, addition of XG did not improve the drag reduction efficiency of HPAM/XG mixed solutions though XG slightly improved the resistance against mechanical degradation in HPAM/ XG mixed polymer solutions.  相似文献   

12.
采用陈化工艺对聚烯烃催化剂进行处理,利用室内模拟环道评价装置评价催化剂陈化与非陈化两种工艺在不同主催化剂浓度、不同助催化剂浓度下所得聚烯烃产物的减阻率,考察催化剂的陈化温度、陈化时间对聚合物减阻率的影响,并采用IR、XRD对聚合物结构进行表征。结果表明:随着主催化剂TiCl4/MgCl2用量的增加,聚合物的减阻率先增大后降低,采用陈化工艺所得聚合物的减阻率均大于非陈化工艺下所得聚合物的减阻率,且聚合物减阻率最大时对应的催化剂用量小于非陈化工艺;助催化剂Al(i-Bu)3用量大于4.29×10-2 mol/L时,陈化工艺所得聚合物的减阻率较非陈化工艺大;采用陈化工艺,在陈化温度和陈化时间分别为-2 ℃和10 min时所得聚合物的减阻率最大,减阻率达到50%左右。IR和XRD表征结果显示,催化剂陈化不能改变聚合产物结构但使其结晶度降低。  相似文献   

13.
以分子动力学方法对比了3种聚合物与水的相互作用能,由径向分布函数得到,聚合物中氧原子与水中氢原子形成的氢键是聚合物与水作用的主要来源。验证实验中以一种非离子表面活性剂型疏水单体与丙烯酰胺、丙烯酸共聚得到一种阴离子型三元疏水缔合聚丙烯酰胺作为降阻剂,核磁氢谱证明合成是成功的,光散射法测得三元聚合物分子量为2.83×106 g/mol。以清水在管道中流动的摩阻为空白组,计算降阻率。在聚合物加量0.025%条件下,PAM的降阻率最高仅达到40%,P(AM-AA-MPEG)的降阻率可达65%。与水相互作用能强的聚合物,降阻性能越好,聚合物在水中形成网状结构是降阻的直接原因,聚合物的长侧链也能提高降阻率。   相似文献   

14.
选择6种不同类型的减阻剂,通过研究不同浓度减阻剂的黏度和减阻效果,分析了减阻剂类型、分子量、分子结构、离子性能和浓度对其减阻性能的影响,并对减阻剂减阻机理进行了探索性研究。结果表明,减阻剂水溶液属于幂率流体,在一定流量范围内减阻率随着浓度的提高而提高;其水溶液黏度、离子特征和减阻率没有明显的联系,分子量在100万以上的减阻率在相同浓度下,减阻率趋于一致;影响减阻剂减阻性能的主要因素是减阻剂的分子结构。得出低分子量的长链结构的减阻剂和具有支链的长链结构的减阻剂以及具有柔顺、螺旋型分子链结构的减阻剂减阻性能更稳定;带支链的长链结构的减阻剂,在水中速溶,在较广泛的雷诺数范围内可得到理想的减阻率,具有较小的分子量,容易分解,对储层伤害小,此类减阻剂适合作页岩气储层大规模滑溜水压裂液的添加剂。  相似文献   

15.
刘鹤年  马祥馆 《石油学报》1987,8(3):109-114
木文论述了油田常用高聚物(PAM)溶液管道减阻的特性。在实验研究的基础上,得出以下:规律性认识。(1)高聚物溶液只是在湍流流态有减阻效应,可分为聚合物流动和最大减阻流动两种情况。前老减阻百分比与溶液浓度有关,后者减阻百分比与溶液浓度无关。达到最大减阻以后,继续增大溶液浓度,不能增加减阻效果。(2)国产PAM (PLA-8O1)具有优良减阻性能。浓度为10 W pPm的溶液,进人湍流区就有明显的减阻效果。浓度大于50 W ppm的溶液,进人湍流区即达到最大减阻。最大减阻流动的摩阻曲线与Virk最大减阻渐近线符合。(3)高聚物溶液的压降与流蚤关系表明,层流时同一流最下溶液的压降大于清水,湍流时小于清水。发生减阻的临界流量随溶液浓度增大而加大。随着高分子化学工业的发展,高聚物已成为石油工业应用最广的材料之一。如聚丙烯酰胺(简称PAM),由于具有多种优良性能,现巳广泛应用于钻井泥浆、油田庄裂,油田注水、堵水、絮凝处理等领域。但是,高聚物作为优良的减阻剂,至今研究很少,甚至未被认识。因此,对高聚物洛液的减阻特性,进行基础性实验研究,对于高聚物的全面应用,对于在石油工业中发展添加剂减阻技来,有着重要的意义.  相似文献   

16.
Heavy crude oil shows high viscosity combined with low mobility, which affects the efficient transportation through pipelines. Drag has long been identified as the main reason for the loss of energy in pipeline fluid transmission and other similar transportation channels. The main contributor to this drag is the viscosity as well as friction against pipe walls, which will result in more pumping power consumption. Various methods such as heating, upgrading, dilution, core annular flow, and emulsification in water have been used for their transportation. The influence of toluene and naphtha as a viscosity and drag reducing solvent on flow of Iraqi crude oil in pipelines was investigated in the present work. The effect of additive type, concentration, pipe diameter, solution flow rate, and heating on the percentage of drag reduction (%Dr) and percentage flow increase (%FI) were the variables of study. The maximum drag reduction was observed to be 40.48% and 34.32% using heavy oil flowing in pipeline diameter of 0.0508 m I.D. at 27°C containing 10 wt% naphtha and toluene, respectively. Also, the dimensional analysis is used for grouping the significant quantities into dimension less group to reduce the number of variables.  相似文献   

17.
An excessive friction pressure loss due to the small tubing diameter and curvature (which is believed to cause secondary flow) of Coiled Tubing (CT) often limits the maximum obtainable fluid flow rate in most CT operations. Good drag reduction property becomes a desirable quality for drilling, completion and workover fluids for CT applications. Yet, the drag reduction phenomenon in coiled tubing has not been well understood.This paper presents an experimental study of drag reduction performance of commonly used drag reducing agent, high molecular weight, anionic, AMPS copolymer (Nalco ASP-820) in straight and coiled tubing. The flow loop used consisted of three 1/2-in. OD coiled tubing reels with curvature ratios of 0.01, 0.019, and 0.031. A 1/2-in. OD, 10-ft straight section was also included to compare the drag reduction behavior between straight and coiled tubing. Various concentrations of drag reducing fluid were tested. The optimum concentration was then determined from the results of drag reduction exhibited by the fluid. The differential pressure versus flow rate data were reduced in terms of Fanning friction factor and solvent Reynolds number for estimating drag reduction characteristics.The results show that the drag reduction in coiled tubing are significantly lower than in straight tubing. As curvature ratio increases, the drag reduction decreases. A new drag reduction envelope (which is parallel to the Virk's envelope for drag reduction in straight pipes) is proposed to evaluate the essential characteristics of drag reduction in coiled tubing. The test data plotted on this new envelope clearly show the delayed onset of drag reduction and the effects of curvature and polymer concentration on drag reduction.Presently, the correlations for accurately predicting drag reduction characteristics of a commonly used drag reducing fluid in coiled tubing are non-existent. In this study, new drag reduction correlations are developed that can be used for the engineering design of coiled tubing hydraulics. The correlations are also evaluated using the experimental data from full-scale coiled tubing flow experiments and results showed the good agreement with the predictions from the developed correlations.  相似文献   

18.
TiCl_4/Al(i-Bu)_3催化α-烯烃合成原油减阻剂   总被引:7,自引:0,他引:7  
研究了TiCl4含量不同的两种TiCl4/Al(i-Bu)3催化剂的配比、起始反应温度、后续反应温度对聚合物性能的影响。采用凝胶渗透色谱(GPC)和核磁共振(1H NMR)法对聚合物进行了表征,结合实验室内模拟环道评价装置测定了聚合物的减阻率、抗剪切性能。实验结果表明,在TiCl4含量不同的两种TiCl4/Al(i-Bu)3催化剂的质量比为1:1、起始反应温度为3℃、后续反应温度为10-20℃的条件下合成的聚合物,经GPC测定,其重均相对分子质量达到4.54×106,相对分子质量分布宽度指数接近 2.9;1H NMR测定结果表明该聚合物是典型的聚烯烃类化合物,纯度达到98%以上。该聚合物在柴油中有良好的溶解性,减阻率达到28.9%,经一次高强度机械剪切后其减阻率减少20%-30%,经5次高强度机械剪切后剩余减阻率为8%,可用于工业原油的输送。  相似文献   

19.
利用室内环道评价装置考察了聚长链α-烯烃减阻剂的溶解时间、雷诺数、加剂浓度、黏均相对分子质量和高聚物的抗剪切能力对减阻性能的影响。结果表明:聚合物的减阻率随溶解时间的延长而增大,达到一定值后趋于稳定;聚合物的凝聚状态以及颗粒的分散程度对减阻剂的溶解能力影响较大;加剂浓度在15 mg/L时减阻率达到最大值,加剂浓度与减阻率的关系基本符合Virk经验公式;存在最佳雷诺数,雷诺数大于或小于最佳雷诺数时,减阻能力减弱,直至无效;在一定的相对分子质量范围内,黏均相对分子质量与减阻率呈线性关系,相对分子质量越大,减阻率越好;聚合物经过齿轮泵剪切后会使减阻率急剧下降,经过管壁的初次剪切也会使减阻率下降40%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号