首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
As a marine pathogenic bacterium that inhabits seawater or seafood, Vibrio vulnificus encounters low salinity and other stresses in the natural environment and during food processing. This investigation explores the cross-protective response of sublethal heat-, acid-, or bile-adapted V. vulnificus YJ03 against lethal low-salinity stress. Experimental results reveal that the acid (pH 4.4)- and heat (41 degrees C)-adapted V. vulnificus were not cross-protected against the lethal low-salinity challenge (0.04% NaCl). The bile (0.05%)-adapted exponential- and stationary-phase cells were cross-protected against low salinity, whereas low-salinity (0.12% NaCl)-adapted stationary cells were sensitized against 12% bile stress. Results of this study provide further insight into the interaction between low salinity and other common stresses in V. vulnificus.  相似文献   

2.
Vibrio parahaemolyticus is a marine foodborne pathogenic bacterium commonly found in seawater or seafood. This bacterium often encounters low salinity stress when the contaminated seafood is washed with fresh water during food processing. This study was conducted to investigate the response of exponential- and stationary-phase cells of V. parahaemolyticus ST550 to lethal or sublethal low salinity. Tolerance to lethal low salinity (0.25% NaCl) was enhanced in V. parahaemolyticus cells in the exponential phase by previous adaptation in sublethal low salinity (0.6% NaCl). Low salinity-adapted cells in the exponential phase were also cross-protected against the challenge of lethal low pH, indifferent to heat, and sensitized to bile, acetic acid, and lactic acid stress. The adapted cells in the stationary phase were significantly protected against heat treatment at 44°C for 10 and 15 min, sensitized to bile and acetic acid treatment, and indifferent to low pH and lactic acid.  相似文献   

3.
In this study, the susceptibility of Vibrio parahaemolyticus in different growth phases after exposure to lethal stresses including 47 °C and 8% ethanol was first investigated. The effect of a culture's growth phase on both the heat and ethanol shock response of V. parahaemolyticus was then examined. It was found that cells of V. parahaemolyticus in the mid-exponential phase, regardless of adaptation, were most susceptible to environmental stresses, while cells in the stationary phase were least susceptible to the lethal stresses examined. Adaptation with heat shock at 42 °C for 45 min or ethanol shock with 5% ethanol for 60 min induced an increased resistance of V. parahaemolyticus to subsequent lethal stresses at 47 °C and 8% ethanol. While the adaptation treatments resulted in a reduced resistance of the test organism to pH 4.4 and 20% NaCl. Generally, the extent of changes in the resistance of V. parahaemolyticus to lethal stresses between the adapted and control cells was found to be growth phase dependent. Compared with the respective control cells, the adapted late-exponential phase cells exhibited the greatest extent of change, while the adapted stationary phase cells showed the least change in their resistance to the lethal stresses examined.  相似文献   

4.
From June 1998 to July 1999, 370 lots of oysters in the shell were sampled at 275 different establishments (71%, restaurants or oyster bars; 27%, retail seafood markets: and 2%, wholesale seafood markets) in coastal and inland markets throughout the United States. The oysters were harvested from the Gulf (49%). Pacific (14%), Mid-Atlantic (18%), and North Atlantic (11%) Coasts of the United States and from Canada (8%). Densities of Vibrio vulnificus and Vibrio parahaemolyticus were determined using a modification of the most probable number (MPN) techniques described in the Food and Drug Administration's Bacteriological Analytical Manual. DNA probes and enzyme immunoassay were used to identify suspect isolates and to determine the presence of the thermostable direct hemolysin gene associated with pathogenicity of V. parahaemolyticus. Densities of both V. vulnifcus and V. parahaemolyticus in market oysters from all harvest regions followed a seasonal distribution, with highest densities in the summer. Highest densities of both organisms were observed in oysters harvested from the Gulf Coast, where densities often exceeded 10,000 MPN/g. The majority (78%) of lots harvested in the North Atlantic, Pacific, and Canadian Coasts had V. vulnificus densities below the detectable level of 0.2 MPN/g; none exceeded 100 MPN/g. V. parahaemolyticus densities were greater than those of V. vulnificus in lots from these same areas, with some lots exceeding 1,000 MPN/g for V. parahaemolyticus. Some lots from the Mid-Atlantic states exceeded 10,000 MPN/g for both V. vulnificus and V. parahaemolyicus. Overall, there was a significant correlation between V. vulificus and V. parahaemolyticus densities (r = 0.72, n = 202, P < 0.0001), but neither density correlated with salinity. Storage time significantly affected the V. vulnificus (10% decrease per day) and V. parahaemolyticus (7% decrease per day) densities in market oysters. The thermostable direct hemolysin gene associated with V parahaemolyticus virulence was detected in 9 of 3,429 (0.3%) V. parahaemolyticus cultures and in 8 of 198 (4.0%) lots of oysters. These data can be used to estimate the exposure of raw oyster consumers to V. vulnificus and V. parahaemolyticus.  相似文献   

5.
In 2009 the U.S. Food and Drug Administration (FDA) announced its intention to implement postharvest processing (PHP) methods to eliminate Vibrio vulnificus from oysters intended for the raw, half-shell market that are harvested from the Gulf of Mexico during warmer months. FDA-approved PHP methods can be expensive and may be associated with unfavorable responses from some consumers. A relatively unexplored PHP method that uses relaying to high salinity waters could be an alternative strategy, considering that high salinities appear to negatively affect the survival of V. vulnificus. During relay, however, oysters may be exposed to rapid and large salinity increases that could cause increased mortality. In this study, the effectiveness of high salinity relay to reduce V. vulnificus to <30 most probable number (MPN) per g and the impact on oyster mortality were assessed in the lower Chesapeake Bay. Two relay experiments were performed during the summer and fall of 2010. Oysters collected from three grow-out sites, a low salinity site (14 to 15 practical salinity units [psu]) and two moderate salinity sites (22 to 25 psu), were relayed directly to a high salinity site (≥30 psu) on Virginia's Eastern Shore. Oysters were assayed for V. vulnificus and Vibrio parahaemolyticus (another Vibrio species of concern) densities at time 0 prior to relay and after 7 and 14 days of relay, using the FDA MPN enrichment method combined with detection by real-time PCR. After 14 days, both V. vulnificus and V. parahaemolyticus densities were ≤0.8 MPN/g, and decreases of 2 to 3 log in V. vulnificus densities were observed. Oyster mortalities were low (≤4%) even for oysters from the low salinity harvest site, which experienced a salinity increase of approximately 15 psu. Results, although preliminary and requiring formal validation and economic analysis, suggest that high salinity relay could be an effective PHP method.  相似文献   

6.
A polymerase chain reaction (PCR) method based on the gyrB (encoding gyrase B or topoisomerase II) gene sequence was developed for the detection of Vibrio vulnificus in seafood. The gyrB primers detected all laboratory isolates of V. vulnificus and did not cross react with other Vibiro and non-Vibrio species examined in this study. The sensitivity of detection of V. vulnificus by gyrB PCR was 300 CFU/g in artificially seeded oyster homogenate without enrichment while, 30 CFU/g could be detected following 18 h enrichment in alkaline peptone water (APW). The gyrB-specific PCR was employed for the direct detection of V. vulnificus in oyster enrichment broths. The assay detected V. vulnificus in 75% of natural oyster samples after 18 h enrichment in APW. The gyrB-based PCR described here offers a simple and specific one step PCR method for the detection of V. vulnificus in seafood enrichment broths.  相似文献   

7.
The effects of cold storage and starvation on the subsequent heat resistance and freeze-thaw resistance of Vibrio vulnificus were studied. Three strains of V. vulnificus were evaluated. Cold stress had no effect on freeze-thaw resistance (P > 0.05). Starvation enhanced freeze-thaw resistance for one strain compared to controls (P < 0.05). V. vulnificus was not heat resistant; control populations were inactivated within 12 min at 47 degrees C. Starvation increased heat tolerance for one strain, but differences were small from a processing perspective (P < 0.05). Cold stress had no effect on heat resistance (P > 0.05). Cold adaptation (holding 4 h at 15 degrees C) enhanced cold temperature (5 degrees C) tolerance. This information will be helpful in the development of methods to minimize V. vulnificus risk.  相似文献   

8.
Contamination of Vibrio parahaemolyticus and Vibrio vulnificus in oysters is a food safety concern. This study investigated effects of electrolyzed oxidizing (EO) water treatment on reducing V. parahaemolyticus and V. vulnificus in laboratory-contaminated oysters. EO water exhibited strong antibacterial activity against V. parahaemolyticus and V. vulnificus in pure cultures. Populations of V. parahaemolyticus (8.74 x 10(7) CFU/ml) and V. vulnificus (8.69 x 10(7) CFU/ml) decreased quickly in EO water containing 0.5% NaCl to nondetectable levels (> 6.6 log reductions) within 15 s. Freshly harvested Pacific oysters were inoculated with a five-strain cocktail of V. parahaemolyticus or V. vulnificus at levels of 10(4) and 10(6) most probable number (MPN)/g and treated with EO water (chlorine, 30 ppm; pH 2.82; oxidation-reduction potential, 1131 mV) containing 1% NaCl at room temperature. Reductions of V. parahaemolyticus and V. vulnificus in oysters were determined at 0 (before treatment), 2, 4, 6, and 8 h of treatment. Holding oysters inoculated with V. parahaemolyticus or V. vulnificus in the EO water containing 1% NaCl for 4 to 6 h resulted in significant (P < 0.05) reductions of V. parahaemolyticus and V. vulnificus by 1.13 and 1.05 log MPN/g, respectively. Extended exposure (> 12 h) of oysters in EO water containing high levels of chlorine (> 30 ppm) was found to be detrimental to oysters. EO water could be used as a postharvest treatment to reduce Vibrio contamination in oysters. However, treatment should be limited to 4 to 6 h to avoid death of oysters. Further studies are needed to determine effects of EO water treatment on sensory characteristics of oysters.  相似文献   

9.
Salt tolerance was induced in Bacillus subtilis IFO 3025 cells when a moderate osmotic stress was imposed by incubation in the presence of compatible solutes and 0.5 M NaCl or 0.8 M sorbitol. The optimum condition for inducing salt tolerance was observed when the cells were incubated in a solution containing 5 mM glutamate, 2.5 mM KCl, and 0.5 M NaCl or 0.8 M sorbitol. After 60 min incubation, the cells were able to form colonies on an agar plate with high salinity. It was confirmed that the cells acquired salt tolerance by accumulating glutamate and potassium ions in the cytoplasm as the main solute and ion, respectively.  相似文献   

10.
Vibrio parahaemolyticus 690, a clinical strain, was subjected to ethanol shock in the presence of 5% ethanol for a period of 30 and 60 min. Survival behaviors of the ethanol shocked and control cells of V. parahaemolyticus in the presence of H(2)O(2) (20 ppm), crystal violet (3 ppm), NaCl (20%), and low pH solution (pH 4.4) containing various organic acids including lactic acid, acetic acid, citric acid and tartaric acid (25 mM) were compared. In addition, the effects of ethanol shock on the fatty acid profile and recovery of V. parahaemolyticus on tryptic soy agar (TSA) plus various amounts of NaCl were also investigated. After ethanol shock, it was found that the proportion of vaccenic acid (18:1) increased, while the proportion of palmitic acid (16:0) and ratio of saturated fatty acid to unsaturated fatty acid decreased in cells of V. parahaemolyticus. The recovery of the ethanol-shocked cells on TSA plus 6.0% or 7.5% NaCl was significantly less than the control cells. Furthermore, ethanol shock increased the survival of V. parahaemolyticus in the presence of H(2)O(2), while made the test organism less resistant to crystal violet, high NaCl and organic acids. The degree of decreased acid tolerance observed on the ethanol-shocked cells of test organism varied with the organic acid examined. Finally, ethanol shock for 60 min exhibited either a higher or similar degree of effect on the test organism (depending on the type of stress encountered) than did ethanol shock for 30 min. Data obtained from the present study does provide useful information that is indispensable when control measure of V. parahaemolyticus is to be performed efficiently and adequately.  相似文献   

11.
Bacteria and phages may be exposed to acid conditions in the stomach and to bile in the intestine. Survival of three strains of Vibrio vulnificus and three strains of its phages was examined at 37 degrees C after exposure to simulated gastric fluid at pH 3 to 4 or to 0, 1, and 2% bile in broth or buffer. Mean D-values (decimal reduction times) at pH 4 and 3 were 3.3 and 1.3 min for V. vulnificus and 97.8 and 0.7 min for its phages. No V. vulnificus survivors were found at pH 2.0. There were few survival differences among strains of V. vulnificus or its phages. Numbers of V. vulnificus increased 1 log in tryptic soy broth containing 1 or 2% bile after 3 h. Numbers of V. vulnificus and its phages remained constant in phosphate-buffered saline regardless of bile concentrations up to 3 h. Those V. vulnificus bacteria and phages that survive stomach acidity may proliferate in the small intestine, since they are resistant to bile.  相似文献   

12.
Vibrio parahaemolyticus is a ubiquitous gram-negative enteropathogenic bacterium. To evaluate the risk of stress-adapted V. parahaemolyticus cells in food, we investigated the survivability of starvation-adapted and starvation-low salinity-adapted cells of this pathogen in different media against different stresses. Logarithmically grown bacterial cells were starved at 25 degrees C in a minimal salt medium with 0.5 or 3.0% NaCl for 24 h. Resistances against challenges of heat, acid, and freeze-thaw treatment exhibited by the starvation-adapted cells were similar to those exhibited by the starvation-low salinity-adapted cells but substantially higher than those of the unadapted control cells. The increased stress resistance of the adapted cells against freeze-thaw challenge was lower in tryptic soy broth than in the starving medium. Resistance of the adapted bacteria against heat and freeze-thaw treatment was completely eliminated in filter-sterilized oyster homogenate medium. Practically, these results help to assess the risk of stress-adapted V. parahaemolyticus in food.  相似文献   

13.
Vibrio vulnificus is a naturally occurring estuarine bacterium often associated with disease such as septicemia in humans following consumption of raw and lightly cooked seafood. In China and neighboring countries, rapid economic growth has encouraged increased consumption of seafood, and dietary habits are changing, with more people eating raw fish. In this study, the prevalence of V. vulnificus was investigated in 48 samples from 11 species of live seafood available from markets in coastal cities of China. The bacterium was detected in four of four razor clam samples, in seven of seven giant tiger prawn samples, and in five of nine mantis shrimp samples. The bacterium was also found in water samples of the prawn aquaria at the markets. The maximum level of V. vulnificus was 3.4 log CFU/g in the razor clam samples and 4.9 log CFU/g in the prawn samples by a direct spreading method. Differential bacterial counts on the prawn body revealed that most of the bacteria were found on the shells (exoskeletons), with very few in the edible muscle. However, dense populations can be found in the intestines. Biochemical tests indicated that the isolates of V. vulnificus were biotype 1 strain, which is pathogenic to humans. These isolates were susceptible to ampicillin, penicillin, kanamycin, streptomycin, and erythromycin. These results suggest that V. vulnificus is a potential health hazard to humans in cities consuming and handling live shellfish, especially giant tiger prawns.  相似文献   

14.
目的 对北京市市售海产品的创伤弧菌污染情况进行调查,并比较实时荧光聚合酶链式反应(RT-PCR)法与VITEK鉴定方法检测结果的一致性。方法 采用传统检验方法结合分子生物学方法对在北京市市场随机采集的105份海产品进行创伤弧菌检验,并比较了RT-PCR法和VITEK鉴定方法的准确性。结果 105份海产品中,有40份样品检出创伤弧菌,检出率为38.10%;其中,虾类产品检出率高达52.38%(11/21),其次为贝类产品(37.88%,25/66)和鱼类产品(22.22%,4/18)。经rpoB基因测序验证,RT-PCR和VITEK方法的准确率分别为100.00%(40/40)和67.50%(27/40)。结论 北京市海产品中存在创伤弧菌的污染,应对海产品中创伤弧菌引起食源性污染的潜在风险进行评估,预防食物中毒的发生。  相似文献   

15.
Vibrio vulnificus is an estuarine bacterium that causes severe wound infection and septicemia with high mortality. It also can be transmitted through the consumption of raw contaminated seafood and is an important foodborne pathogen. A total of 40 environmental and clinical V. vulnificus strains isolated from the United States and Taiwan were analyzed for virulence in animals, the presence of virulence-associated factors, and susceptibility to environmental stresses. Virulence in mice was exhibited by 85% of the environmental strains and 95% of the clinical strains. Strains from environmental or clinical sources were similar in virulence-associated phenotypes (protease activity, utilization of transferrin-bound iron, hemolysis, and inactivation in serum) and susceptibility to various stresses (4 and 52 degrees C, 0.1 and 10% NaCl, and pH 3.2), except freeze-thaw treatment. The clinical strains killed experimental animals after a shorter incubation time than did the environmental strains. Most of the 15 virulence-associated genes examined were present in most of the strains, regardless of their sources or virulence, with the exception of vvh, flgF, and purH. vvh was significantly more common in clinical strains than in environmental strains, and vvh, flgF, and purH were more common in virulent strains than in nonvirulent strains. These data may be helpful in devising strategies to manage or reduce the presence of V. vulnificus in foods.  相似文献   

16.
创伤弧菌为革兰氏阴性嗜盐菌,天然存在于世界各地温暖的河口与海洋环境中,是一种重要的食源性致病菌,人类感染往往与食用受污染的海产品有关。食源性创伤弧菌感染最常见的临床症状是原发性败血症,病死率超过50%。文中介绍了创伤弧菌生物学特性、控制措施及风险评估的研究进展。  相似文献   

17.
ABSTRACT: Short-chain fatty acids (SCFA), which are widely used as food preservatives and are also present in the gastrointestinal (GI) tract of animals at high concentrations, may play a role in the persistence of Salmonella typhimurium in the environment. To test the hypothesis, S. typhimurium was adapted to SCFA for 1 h and the % survivors against various stress conditions was determined. For adaptation, the SCFA mixtures at the concentrations found in small (SI) and large intestine (LI) were used. The % survivors against extreme acid (pH 3.0), high osmolarity (2.5 M NaCl), and reactive oxygen (20 mM H2O2) was greatly increased by exposure to SCFA LI, but to a much less extent by SCFA SI. The results suggest that encountering SCFA by S. typhimurium in the large intestine of the host food animal or food materials treated with them may increase the persistence of S. typhimurium in food animal pre-and postharvest production by enhancing overall stress resistance.  相似文献   

18.
A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m(2) (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m(2). COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m(2) without salinity driven energy, and <0.015 W/m(2) with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water.  相似文献   

19.
Variability in growth limits of Listeria monocytogenes in response to low pH (adjusted with HCl) or high salinity (NaCl) was evaluated for 127 strains in brain heart infusion broth at 25 degrees C. Over 95% of strains habituated at pH 5.0 grew subsequently at pH 4.2, while 25% were able to grow at pH 4.1. More than 85% of strains preadapted to growth at 8.5% NaCl (wt/vol) subsequently grew in the presence of 11.3% NaCl, while 25% were able to grow at 13% NaCl, and 4.7% grew in the presence of 13.9% NaCl. The results extend the generally accepted growth limits for L. monocytogenes in response to these hurdles. Two strains, one of which was relatively tolerant of both hurdles, and another that was less tolerant of both hurdles, were subjected to different sequences of lethal acid (pH 3.5) and NaCl (14%, wt/vol) stresses to determine whether survival was affected by growth limits, or by sequence of application of treatment. There was no significant difference in the inactivation kinetics of the two strains, but inactivation rates were affected by different treatments. For both strains, the inactivation rates, from fastest to slowest, resulted from: (i) lethal pH and then by lethal water activity, or lethal water activity and then by lethal pH; (ii) lethal pH and water activity applied simultaneously; (iii) lethal pH; and (iv) lethal water activity. The results demonstrated that the sequence of lethal stress application strongly influences L. monocytogenes inactivation, and that L. monocytogenes growth limits are not good predictors of survival in inimical environments.  相似文献   

20.
Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号