首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
A method of controlling the feeding concentration of methane was applied in a hot-filament chemical vapor deposition (HFCVD) in order to improve the nucleation of diamond on the beryllium oxide substrates. The nucleation density and the morphologies of diamond were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) while the thermal conductivities of substrates and the composites were detected by laser-diathermometer. The results show that the diamond thin film is in larger grain size with lower roughness when CH4 and H2 enter the chamber, respectively, rather than as a mixture, and the composites’ conductivity soared by 21%–31% compared with BeO substrates. At the conditions of separated gas entry, several projects with changes of the CH4 flux during depositing were designed to discuss the influence of CH4 concentration on diamond nucleation. The uniform and compact diamond thin films were acquired when the ratio of CH4:H2 at nucleation stage was in the range of 4%–8%.  相似文献   

2.
To synthesize diamond films by microwave plasma enhanced chemical vapor deposition (MPECVD), the methane concentration (CH4/H2)plays a crucial role. It is well-known that there always exists a critical methane concentration (≤0.6%) only below which a good quality diamond film can be obtained. In this study, however, the phenomena of diamond synthesis resulting from high carbon concentration conditions were observed. The molten metals, e.g., Ag, Cu, were used as the deposition substrates on which crystalline diamonds can be achieved from a methane content of CH4/H2≥6% or even from solid carbon sources. These results suggest that there may exist a low methane content boundary layer (<0.6%) in the proximity of molten metal surface on which suitable species, CH, CH+, Hα and Hβ are composed for the diamond nucleation and growth similar to the condition as in the conventional low methane contents. The molten metal inclines to dissolve other forms of carbonaceous materials other than diamond, and thus keeps a much higher steady supply of carbon atoms that enhances the quality as well as the growth rate of the forming diamonds. Received: 23 June 2001 / Accepted: 23 July 2001  相似文献   

3.
M. Marton  T. I?ák  M. Vojs  J. Bruncko 《Vacuum》2007,82(2):154-157
Nanocrystalline materials are of high interest, because mechanical and physical properties of such materials are different from those or coarse-grained type. Continuous and smooth nanocrystalline diamond (NCD) thin films were successfully grown on mirror polished silicon substrates, using double bias plasma-enhanced hot filament chemical vapour deposition technique. A gas mixture of Ar:CH4:H2 and CH4:H2 was used as the precursor gas. The effect of the gas composition, flow rate and substrate bias during deposition on diamond crystallite size was investigated. Changing the growth parameters facilitates control of grain size of polycrystalline diamond thin films from microcrystalline to nanocrystalline. The structure of fine-grained NCD films has been studied with scanning electron microscopy and Raman spectroscopy.  相似文献   

4.
The nucleation and growth of diamond coatings on pure Ti substrate were investigated using microwave plasma assisted chemical vapor deposition (MW-PACVD) method. The effects of hydrogen plasma, plasma power, gas pressure and gas ratio of CH4 and H2 on the microstructure and mechanical properties of the deposited diamond coatings were evaluated. Results indicated that the nucleation and growth of diamond crystals on Ti substrate could be separated into different stages: (1) surface etching by hydrogen plasma and the formation of hydride; (2) competition between the formation of carbide, diffusion of carbon atoms and diamond nucleation; (3) growth of diamond crystals and coatings on TiC layer. During the deposition of diamond coatings, hydrogen diffused into Ti substrate forming titanium hydride and led to a profound microstructure change and a severe loss in impact strength. Results also showed that pre-etching of titanium substrate with hydrogen plasma for a short time significantly increased the nuclei density of diamond crystals. Plasma power had a significant effect on the surface morphology and the mechanical properties of the deposited diamond coatings. The effects of gas pressure and gas ratio of CH4 and H2 on the nucleation, growth and properties of diamond coatings were also studied. A higher ratio of CH4 during deposition increased the nuclei density of diamond crystals but resulted in a poor and cauliflower coating morphology. A lower ratio of CH4 in the gas mixture produced a high quality diamond crystals, however, the nuclei density and the growth rate decreased dramatically.  相似文献   

5.
Nano-crystalline diamond (NCD) films have been grown on cemented carbide substrates by high current extended DC arc plasma process using Ar/H2/CH4 gas mixture at low gas pressure. The plain view and cross section of films are characterized with scanning electron microscopy. A uniform and smooth surface morphology of NCD thin films is observed. Raman spectroscopy has been used to investigate purity of the NCD films. Experimental results on the synthesis and characterization of the NCD films on cemented carbide substrates are discussed in this article.  相似文献   

6.
Diamond particles were deposited onto seeded cemented tungsten carbide (WC-Co) substrates using conventional hot-filament chemical vapour deposition (HFCVD) and time-modulated CVD (TMCVD) processes. The substrates were pre-seeded ultrasonically with diamond particles of different grit sizes. In this investigation, we employ timed methane (CH4) gas modulations, which are an integral part of our TMCVD process in order to enhance diamond nucleation density. During diamond deposition using the conventional HFCVD process, methane gas flow was maintained constant. The total hydrogen flow into the reactor during TMCVD process was higher than in the HFCVD process. Hydrogen etching can be expectedly more prominent in the TMCVD process than in HFCVD of diamond particles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) results showed that a proper selection of the diamond grit size for seeding using ultrasounds can lead to enhancement in the nucleation density values of about two orders of magnitude (107 to 109 cm− 2). The TMCVD process using the different seeded substrates can result in high nucleation density values of up to 1010 cm− 2.  相似文献   

7.
Diamond coating on Ti-6Al-4V alloy was carried out using microwave plasma enhanced CVD with a super high CH4 concentration, and at a moderate deposition temperature close to 500 °C. The nucleation, growth, adhesion behaviors of the diamond coating and the interfacial structures were investigated using Raman, XRD, SEM/TEM, synchrotron radiation and indentation test. Nanocrystalline diamond coatings have been produced and the nucleation density, nucleation rate and adhesion strength of diamond coatings on Ti alloy substrate are significantly enhanced. An intermediate layer of TiC is formed between the diamond coating and the alloy substrate, while diamond coating debonding occurs both at the diamond-TiC interface and TiC-substrate interface. The simultaneous hydrogenation and carburization also cause complex micro-structural and microhardness changes on the alloy substrates. The low deposition temperature and extremely high methane concentration demonstrate beneficial to enhance coating adhesion strength and reduce substrate damage.  相似文献   

8.
Masato Miyake 《Thin solid films》2007,515(9):4258-4261
Characteristics of nano-crystalline diamond (NCD) thin films prepared with microwave plasma chemical vapor deposition (CVD) were studied in Ar/H2/CH4 gas mixture with a CH4 gas ratio of 1-10% and H2 gas ratio of 0-15%. From the Raman measurements, a pair of peaks at 1140 cm− 1 and 1473 cm− 1 related to the trans-polyacetylene components peculiar to nano-crystalline diamond films was clearly observed when the H2 gas ratio of 5% was added in Ar/H2/CH4 mixture. With an increase of H2 gas content up to 15%, their peaks decreased, while a G-peak at roughly 1556 cm− 1 significantly increased. The degradation of NCD film quality strongly correlates with the decrease of C2 optical emission intensity with the increase of hydrogen gas contents. From the surface analysis with atomic force microscopy (AFM), it was found that grain sizes of NCD films were typically of 10-100 nm in case of 5% H2 gas addition.  相似文献   

9.
The effects of oxygen addition on the synthesis of diamond are extensively studied by using the hot-filament chemical vapor deposition (HFCVD) method, in which it is simple and easy to control the deposition parameters independently. Diamond films are deposited on silicon wafers under the conditions of substrate temperature 530–950 C; total reaction pressure 700–8000 Pa; and methane concentration 0.4–2.4% in both CH4–H2 and CH4–H2–O2 systems.At deposition conditions of low substrate temperature, high CH4 concentration or high total pressure, soot-like carbon and/or graphite are deposited without oxygen addition. When even a small amount of oxygen (about 0.6%) is added, well-faceted diamond films are observed in scanning electron microscopy micrographs and a sharp diamond peak in the Raman spectra appears. The range of deposition parameters for high-quality diamond syntheses are extended by oxygen addition (low substrate temperature, high methane concentration and high reaction pressure).  相似文献   

10.
In this study, diamond films were synthesized on silicon substrates by microwave plasma enhanced chemical vapor deposition (CVD) over a wide range of experimental parameters. The effects of the microwave power, CH4/H2 ratio and gas pressure on the morphology, growth rate, composition, and quality of diamond films were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A rise of microwave power can lead to an increasing pyrolysis of hydrogen and methane, so that the microcrystalline diamond film could be synthesized at low CH4/H2 levels. Gas pressure has similar effect in changing the morphology of diamond films, and high gas pressure also results in dramatically increased grain size. However, diamond film is deteriorated at high CH4/H2 ratio due to the abundant graphite content including in the films. Under an extreme condition of high microwave power of 10 kW and high CH4 concentration, a hybrid film composed of diamond/graphite was successfully formed in the absence of N2 or Ar, which is different from other reports. This composite structure has an excellent measured sheet resistance of 10–100 Ω/Sqr. which allows it to be utilized as field electron emitter. The diamond/graphite hybrid nanostructure displays excellent electron field emission (EFE) properties with a low turn-on field of 2.17 V/μm and β = 3160, therefore it could be a promising alternative in field emission applications.  相似文献   

11.
Nanocomposite films consisting of diamond nanoparticles of 3-5 nm diameter embedded in an amorphous carbon matrix have been deposited by means of microwave plasma chemical vapour deposition (MWCVD) from CH4/N2 gas mixtures. Si wafers, Si coated with TiN, polycrystalline diamond (PCD) and cubic boron nitride films, and Ti-6Al-4V alloy have been used as substrates. Some of the substrates have been pretreated ultrasonically with diamond powder in order to enhance the nucleation density nnuc. It turned out that nnuc depends critically on the chemical nature of the substrate, its smoothness and the pretreatment applied. No differences to the nucleation behaviour of CVD PCD films were observed. On the other hand, the growth process seems to be not affected by the substrate material. The crystallinity (studied by X-ray diffraction) and the bonding environment (investigated by Raman spectroscopy) show no significant differences for the various substrates. The mechanical and tribological properties, finally, reflect again the influence of the substrate material: on TiN, a lower hardness was measured as compared to Si, PCD and c-BN, whereas the adhesion of c-BN/nanocrystalline diamond (NCD) system was determined by that of the c-BN film on the underlying Si substrate.  相似文献   

12.
Hydrogen-incorporated nanocrystalline diamond thin films have been deposited in microwave plasma enhanced chemical vapour deposition (CVD) system with various hydrogen concentrations in the Ar/CH4 gas mixture. The bonding environment of carbon atoms was detected by Raman spectroscopy and the hydrogen concentration was determined by elastic recoil detection analysis. Incorporation of H2 species into Ar-rich plasma was observed to markedly alter the microstructure of diamond films. Raman spectroscopy results showed that part of the hydrogen is bonded to carbon atoms. Raman spectra also indicated the increase of non-diamond phase with the decrease in crystallite size. The study addresses the effects of hydrogen trapping in the samples when hydrogen concentration in the plasma increased during diamond growth and its relation with defective grain boundary region.  相似文献   

13.
Diamond films were provided by a hot filament thermal chemical vapour deposition method with an H2-CH4 gas mixture under various reaction conditions: CH4/H2 ratios of 0.5% and 1.0%, Si and Cu substrates, a substrate temperature of 750 °tC, a pressure of 7 torr and a reaction time of 12 h. TEM observation showed that the films produced have many defects such as twins, stacking faults and large distortion of lattices. These defects, which increase with increasing CH4 concentration, seem to be introduced during the crystal growth process. Fivefold symmetry twinned crystals were often observed in the diamond films.  相似文献   

14.
The bonding strength and interfacial electronic properties of biphenyldimethyldithiol (HS–CH2–C6H4–C6H4–CH2–SH) adsorbed on Au(111) and polycrystalline cobalt are identified from combined photoemission and inverse photoemission. In order to develop a better understanding of the thiol functional group to metal surface interaction, the stable orientation, bonding site, bonding strength and interfacial electronic properties of methylthiol (S–CH3) adsorbed on Au(111) and Co(0001) have been determined by ab initio density functional calculations. Both experiment and theory suggest that thiol bonding to cobalt surfaces is stronger compared to gold surfaces. The transfer of charge toward the adsorbed sulfur is greater for the thiols on cobalt than on gold.  相似文献   

15.
S. Jawid Askari  Fanxiu Lu 《Vacuum》2008,82(6):673-677
The fabrication of a well-adherent diamond film on titanium and its alloys is always problematical due to the different thermal expansion coefficients of the two materials, the complex nature of the interlayer formed during diamond deposition, and the difficulty in achieving very high nucleation density. In this work, well-adherent and smooth nanocrystalline diamond (NCD) thin film is successfully deposited on pure titanium substrate by microwave plasma-assisted chemical vapor deposition (MWPCVD) method in Ar/CH4 environment. It is found that the average grain size is less than 20 nm with a surface roughness value as low as 12 nm. Morphology, surface roughness, diamond crystal orientation and quality are obtained by characterizing the sample with field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy, respectively. Detailed experimental results and mechanisms for NCD film deposition are discussed.  相似文献   

16.
The effect of nitrogen addition on the morphology, magnetic anisotropy, and magnetoresistance properties of Co–Ni–N granular thin films were investigated. The films were grown by electrodeposition onto aluminum substrates at room temperature. By a complex process of cationic catalysis occurring at the cathode/electrolyte interface, nitrogen is adsorbed in the Co–Ni film. Finally, a granular film grows by a tridimensional progressive nucleation mechanism. The nature of the grains and of the interface between them influences exchange interactions between grains, which play an important role in determining the magnetic anisotropy. From the magnetic measurements, we found that the magnetic anisotropy constant varied in the range K eff=(−21.5÷36.6)×104 J⋅m−3 and the coercivity varied between H c=(13÷67) kA⋅m−1 depending on the sodium nitrate content in the plating bath. The Co–Ni–N granular thin films display large values (∼160%) of magnetoresistance. These large values of magnetoresistance make such structures attractive for applications as sensitive magnetic field sensors.  相似文献   

17.
In this paper, the morphological, structural and electrochemical properties of nanocrystalline diamond (NCD) films grown on carbon fibers (CF) were investigated. The CF substrates were produced at three different heat treatment temperatures (HTT):1000, 1500 and 2000 °C. The HTT variation promoted different organization indexes on the CF structures. Consequently, the NCD coating formation was strongly affected by the substrate HTT. The changes in the properties of the diamond films were discussed as a function of the film morphology evolution using CH4 flow rate of 0.25, 0.5 and 1.0 sccm in the feed gas. The X-ray diffraction measurements for the CF and NCD/CF composites were determinant to characterize the crystallinity of the NCD films as a function of the CF HTT and of the CH4 addition. Based on the diffractograms, the Scherrer's equation was applied to the (111) NCD peak, resulting in grain size values varying from 11.0 to 5.0 nm depending on the CH4 flow rate and on the CF HTT. The scanning electron microscopy images confirmed the deposition of a continuous NCD coating with high nucleation rate covering the whole CF, while their quality was analyzed by Raman spectroscopy measurements. The NCD grain agglomerates increased as a function of the increase in the CH4 flow rate from 0.25 to 1.0 sccm, showing similar film morphology to that of the unfaceted diamond balls obtained by chemical vapor deposition. This behavior confirmed the expected tendency by decreasing the diamond quality with the CH4 addition, especially for the films grown on CF treated at 1500 and 2000 °C. This performance was also corroborated by the cyclic voltammetry measurements concerning the electrode potential window and their responses in a redox couple.  相似文献   

18.
Covalent coupling of sulfonic group (–SO3H) was attempted on different polymers to evaluate efficacy of this functional group in inducing nucleation of apatite in body environment, and thereupon to design a simple biomimetic process for preparing bonelike apatite-polymer composites. Substrates of polyethylene terephthalate (PET), polycaprolactam (Nylon 6), high molecular weight polyethylene (HMWPE) and ethylene-vinyl alcohol co-polymer (EVOH) were subjected to sulfonation by being soaked in sulfuric acid (H2SO4) or chlorosulfonic acid (ClSO3H) with different concentrations. In order to incorporate calcium ions, the sulfonated substrates were soaked in saturated solution of calcium hydroxide (Ca(OH)2). The treated substrates were soaked in a simulated body fluid (SBF). Fourier transformed infrared spectroscopy, thin-film X-ray diffraction, and scanning electron microscopy showed that the sulfonation and subsequent Ca(OH)2 treatments allowed formation of –SO3H groups binding Ca2+ ions on the surface of HMWPE and EVOH, but not on PET and Nylon 6. The HMWPE and EVOH could thus form bonelike apatite layer on their surfaces in SBF within 7 d. These results indicate that the –SO3H groups are effective for inducing apatite nucleation, and thereby that surface sulfonation of polymers are effective pre-treatment method for preparing biomimetic apatite on their surfaces.  相似文献   

19.
Micro-crystalline diamond (MCD) and diamond like carbon (DLC) thin films were deposited on silicon (100) substrates by hot-filament CVD process using a mixture of CH4 and H2 gases at substrate temperature between 400–800°C. The microstructure of the films were studied by X-ray diffraction and scanning electron microscopy. The low temperature deposited films were found to have a mixture of amorphous and crystalline phases. At high temperatures (> 750°C) only crystalline diamond phase was obtained. Scanning electron micrographs showed faceted microcrystals of sizes up to 2μm with fairly uniform size distribution. The structure of DLC films was studied by spectroscopic ellipsometry technique. An estimate of the amount of carbon bonds existing insp 2 andsp 3 form was obtained by a specially developed modelling technique. The typical values ofsp 3/sp 2 ratio in our films are between 1·88–8·02. Paper presented at the poster session of MRSI AGM VI, Kharagpur, 1995  相似文献   

20.
Diamond was coated onto wire substrates of various transition metals (Mo, W or Ti) of 0.5 mm diameter by the microwave plasma CVD method from a gas mixture of the CO–H2 system. The CVD conditions for a uniform diamond coating were microwave power, 750–1100 W; total pressure, 2000 Pa; total flow rate, 200 ml min-1; CO concentration, 5 vol%; treatment time, 5 h. The wire substrates were mounted vertically or horizontally on a pyrophyllite susceptor, which was placed parallel to the irradiation direction of microwave power. Homogeneous and fine-grained diamond film was prepared on the whole surface of horizontal W wire substrate with a wire height of 2 mm from the susceptor. To obtain a dense diamond coating, the height has to be as low as possible in the plasma region, where the plasma density is higher at lower substrate temperature. Low pressure and high microwave power were suited for fine-grained coating. Diamond deposition rate was found to be more dependent on pressure than substrate temperature. As the pressure increased, a glassy carbon film was formed instead of diamond. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号