首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper gives a numerical investigation of the effect of mirror curvature on optical performance of a Linear Fresnel Reflector solar field installed recently in Morocco. The objective is to highlight and discuss the effect of mirror curvature on the flux density distribution over the receiver and the system optical efficiency. For this purpose, a Monte Carlo-ray tracing simulation tool is developed and used to optimize the optical design taking into account the curvature degree of the heliostat field. In order to assess the accuracy of the numerical code developed and the validity of simulation results, a set of verification tests were developed and detailed within this article. Then, the optical performance of the system is evaluated as a function of mirror curvature and receiver height. The major challenge of this study is to find a trade-off between heliostat curvature and receiver height since lower and smaller receivers may reduce the system cost. It has been found that the flux distribution over the receiver and the optical efficiency of the system are relatively sensitive to the mirror curvature. We have demonstrated quantitatively how the use of curved mirrors can enhance the optical performance and reduce the required receiver size.  相似文献   

2.
To develop concentrating photovoltaic systems for building integration applications, two optical devices are proposed. The concentrators are based in stationary linear Fresnel lenses and secondary CPC. The moving focal area is ten times smaller than the Fresnel lens aperture. Concentrator characteristics are studied in detail: shadowing effect, placement of the focal area and optical concentration efficiency. The main contribution of this paper is the three-dimensional optical analysis of the non-imaging concentrating systems. In terms of solar radiation, photovoltaic moving modules placed in the focal area of stationary concentrators are compared with simply fixed photovoltaic modules. In favourable weather locations, the beam radiation incident on the concentrating modules would be a large percentage, more than 50%, of the global radiation received by the fixed photovoltaic devices.  相似文献   

3.
The development effort in optical components for optimally concentrating solar energy has thus far emphasized reflecting elements, such as cylindrical and compound parabolic mirrors. In this paper we consider transmission elements, particularly a new design for an efficient linear Fresnel lens capable of high concentration for a given acceptance angle. The predicted performance of the lens is comparable to that of the “ideal” reflector, while providing greater reliability at a lower cost.  相似文献   

4.
180多年前,数学家菲涅耳将平凸透镜拉平.制成了由系列小棱镜构成的平板薄片透镜,这就是著名的“菲涅耳透镜”(见图1)。由于薄而轻,用材少,已在多学科、多领域得到应用,如眼科用薄片透镜、齿科照明灯、灯塔、教学仪器、太阳灶等等。菲涅耳透镜的缺点在于:其一,由于棱镜二面全部为平面,焦点为聚焦斑(如图2甲),聚集比远不如球面透镜高(如图2乙);  相似文献   

5.
线性菲涅耳聚光反射装置是对连续抛物面聚光镜的一种离散化近似,因由法国工程师Fresnel发明而得名。线性菲涅耳太阳能热发电技术在太阳能热发电系统中非常有用,尤其是在需要安装大面积的镜场时,对成熟的槽式太阳能聚光热发电系统形成强有力的竞争。简要介绍了线性菲涅耳聚光反射装置的技术特点及发展现状。  相似文献   

6.
The application of a wide angle concentrating Fresnel lens to a linear solar energy system, in which the optical concentration is stationary while the absorber follows the locus of best foci, is investigated. The two substantial direction possibilities of the linear axis, east-west and polar, are compared to each other. It is shown that such a concentrator may operate about six hours a day throughout the year with an average effective concentration exceeding 10. Specifically, a polar installation, including a fixed lens and a fixed assembly of separate absorbers behind it, may enable sufficient concentration for residential heating and airconditioning without any moving parts.  相似文献   

7.
This paper evaluates Compact Linear Fresnel Reflector (CLFR) concepts suitable for large scale solar thermal electricity generation plants. In the CLFR, it is assumed that there will be many parallel linear receivers elevated on tower structures that are close enough for individual mirror rows to have the option of directing reflected solar radiation to two alternative linear receivers on separate towers. This additional variable in reflector orientation provides the means for much more densely packed arrays. Patterns of alternating mirror inclination can be set up such that shading and blocking are almost eliminated while ground coverage is maximised. Preferred designs would also use secondary optics which will reduce tower height requirements. The avoidance of large mirror row spacings and receiver heights is an important cost issue in determining the cost of ground preparation, array substructure cost, tower structure cost, steam line thermal losses, and steam line cost. The improved ability to use the Fresnel approach delivers the traditional benefits of such a system, namely small reflector size, low structural cost, fixed receiver position without moving joints, and non-cylindrical receiver geometry. The modelled array also uses low emittance all-glass evacuated Dewar tubes as the receiver elements. Alternative versions of the basic CLFR concept that are evaluated include absorber orientation, absorber structure, the use of secondary reflectors adjacent to the absorbers, reflector field configurations, mirror packing densities, and receiver heights. A necessary requirement in this activity was the development of specific raytrace and thermal models to simulate the new concepts.  相似文献   

8.
A linear Fresnel lens (LFL) designed according to Fermat's principle is slightly modified with respect to used technology for mass production from glass. Manufactured Fresnel lenses are used in a fully tracking concentrating collector with aperture about 36 m2 and in a collector with stationary concentrator and movable absorber, which may serve as solar collector with temperature and illumination control. A combination of linear Fresnel lenses with PV cells may reduce cost of autonomous solar installations.  相似文献   

9.
An extensive indoor experimental characterisation program to investigate the heat loss from a point focus Fresnel lens PV Concentrator (FPVC) with a concentration ratio of 100× was performed for a range of simulated solar radiation intensities between 200 and 1000 W/m2, different ambient air temperatures, and natural and forced convection. From the experimental program it was found that the solar cell temperature increased proportionally with the increase in simulated solar radiation for all experimental tests, indicating that conductive and convective heat transfer were significantly larger than the long wave radiative heat transfer within and from the FPVC system. For the simulated worst case scenario, in which the FPVC system was tested under a simulated solar radiation intensity of 1000 W/m2 and ambient air temperature of 50 °C with no forced convection, the predicted silicon solar cell efficiency in the FPVC system was reduced to approximately half that at standard test conditions.  相似文献   

10.
11.
The Fresnel lens concept for solar control of buildings   总被引:1,自引:1,他引:1  
Fresnel lenses are optical devices for solar radiation concentration and are of lower volume and weight, smaller focal length and lower cost, compared to the thick ordinary lenses. The advantage to separate the direct from the diffuse solar radiation makes Fresnel lenses suitable for illumination control of building interior space, providing light of suitable intensity level and without sharp contrasts. In this paper, the Fresnel lens concept is suggested for solar control of the buildings to keep the illumination and the interior temperature at the comfort level. Laboratory scale experimental results are presented, giving an idea about the application of this new optical system. The collection of 60–80% of the transmitted solar radiation through the Fresnel lenses on linear absorbers leaves the rest amount to be distributed in the interior space for the illumination and thermal building needs. In low intensity solar radiation, the absorber can be out of focus, leaving all light to come in the interior space and to keep the illumination at an acceptable level. The Fresnel lenses can be combined with thermal, photovoltaic, or hybrid type photovoltaic/thermal absorbers to collect and extract the concentrated solar radiation in the form of heat, electricity or both. By using thermal absorbers and for low operating temperature, efficiency of about 50% can be achieved, while considering photovoltaics, satisfactory electrical output can be obtained. Regarding the effect of the suggested system to building space cooling, the results showed a satisfactory temperature reduction, exceeding 10 °C for cold water circulation through the absorber.  相似文献   

12.
以菲涅尔三级聚光器和三结砷化镓太阳电池芯片为研究对象,利用Trace Pro模拟菲涅尔高倍聚光条件下电池芯片表面的能流密度分布,并将结果导入ANSYS中作为三结砷化镓太阳电池芯片的边界条件。通过有限元模拟了电池芯片的温度和热流分布,并利用热-结构耦合分析法,得到了电池芯片的热应力分布。结果表明:三级聚光器能有效提高聚焦光斑能量均匀性、增大系统接收角,从而降低热应力,提高光伏系统的整体性能。  相似文献   

13.
One of the tasks of Fresnel lenses (FLs), which are used in solar micromodules jointly with cascade photocells, is to increase the concentration capability. This paper considers the solution of this task at the expense of using optical media (L). A program for the numerical simulation of the concentration characteristics of the FL-L system has been developed with allowance for inaccuracies in FLs and Fresnel losses at the interface of media. It is shown that the average concentration can be increased by 36% in the FL-L system for the case in which there is 95% receiver capture of a flow going from a medium and, as a whole, with allowance for losses at the medium-photocell boundary (they can be regulated), the growth in an average concentration for a silicon solar cell without coating will be 20–25%. At a smaller acceptable percentage of flow capture (if there is a goal to increase concentration), the efficiency of optical media in the FL-L system grows and can reach the values obtained in the paraboloid-optical medium system.  相似文献   

14.
This research formulates an elliptical-based Fresnel lens concentrator system using optical geometry and ray tracing technique. The author incorporates solar spectrum with the refractive indices of lens materials to form different color mixes on the target plane. The model illustrates the solar spectrum distributions under the Fresnel lens. It can be used to investigate each spectral segment's distribution patterns and helps to match the concentration patterns of different wavelengths to different solar energy applications.  相似文献   

15.
一引言 传统的平面菲涅耳透镜质轻价廉,用材料少,已在多学科得到应用.其难点是直径难以造大,限制了其在阳光集热方面的使用,许多专家试图设计大型精密机床来制造大尺寸整体菲涅耳透镜用于阳光集热,其技术难度之大、成本不菲可以想见.笔者创新提出区块分割法,发明新型太阳能聚光集热器--塑料透射式太阳能聚光器(专利申请号:CN200410020974.2,公开号:CN595011A),核心技术之一是其巨型的薄板聚光透镜由一系列曲面聚光瓦拼接搭建而成,从此人们可以利用聚光瓦像用砖瓦盖房一样轻易地构筑自己所需要的聚光集热装置,从太阳光中获得所需的高温能量.  相似文献   

16.
带有二次反射器的线性菲涅耳聚光集热器,虽然其接收器表面的能量分布更均匀,但也增加了接收器对反射镜场的遮挡。本文采用理论计算和模拟两种方式对已设计的线性菲涅耳集热器二次反射器对镜场的遮挡情况进行分析,先通过理论计算得出二次反射器对西边三块初级反射镜遮挡角θni的范围,然后利用光线追踪软件模拟出安装和不安装二次反射器两种情况下到达初级反射镜的光线数目,根据光线数目变化情况得出西边三块反射镜的遮挡角变化范围分别为70º ~ 90º、54º ~ 72º和42º ~ 58º,同时引入光线损失率来衡量二次反射镜对镜元遮挡的影响,结果得出安装二次反射器后镜元光线损失率最大值达到23.53%。  相似文献   

17.
The Linear Fresnel Collector (LFC) technology is currently being commercialised by several companies for the application in solar thermal power plants. This study compares the electricity generation costs for LFC and Parabolic Trough Collector (PTC). PTC is the most commercial CSP technology to date and is therefore regarded as the benchmark. For reasons of comparability, direct steam generation is assumed for both LFC and PTC.For the LFC, cost data comparable to typical CSP plant sizes are hardly available. Therefore, the break even cost – referring to aperture-specific collector investment – is determined, where cost-parity of the electricity generation with a PTC reference plant is reached.This study varies the assumptions on collector performance and operation and maintenance costs to reflect different designs of LFC technologies. The calculations were carried out using cost and hourly simulation performance models. Depending on the assumptions, the costs for a linear Fresnel collector solar field should range between 78 and 216 €/m2 to reach cost-parity at assumed reference solar field costs of 275 €/m2 for the PTC.The LFC principle of arranging the mirrors horizontally leads to lower aperture-related optical efficiency which must be compensated by lower cost per m2 of aperture compared to PTC. The LFC is a collector with significant cost reduction potential, mainly due to cheaper mirrors and structural advantages.The presented cost and performance targets shown in this study must be met by LFC technology developers to reach the PTC benchmark.  相似文献   

18.
《动力工程学报》2016,(7):563-568
对线性菲涅尔集热器的聚光性能和光学效率进行了模拟与计算.根据几何光学原理,对集热器镜场各项光学损失(如余弦损失、阴影与遮挡损失)建立数学模型,计算出每项光学损失对应的光学效率.再用TracePro光学软件建立集热器的几何模型,利用光线追踪的方法,模拟入射到镜场的光线在模型空间的传播.光线在模型表面发生吸收、反射和散射等过程,追踪每束光线的光通量,计算得到集热器的光学效率和聚光比等性能参数.结果表明:通过数学模型和光学软件模拟得出的集热器光学效率一致,2种方法分别从细节与整体上剖析了影响集热器光学性能的因素,在集热器设计中可以结合使用,互相补充.  相似文献   

19.
The author has studied the theoretical performance of the Fresnel lens as a function of the design parameters—i.e. the radius to the centre of the steps, the focal distance from the back of the lens to the plane of the image with the object (i.e. the sun) at infinity, the thickness of the lens plate, the step width and the refractive index of the material (with respect to air)—used in its fabrication. Numerical calculations have also been carried out for a Fresnel lens of perspex sheet.  相似文献   

20.
In this paper, a ray-tracing model is developed using MATLAB based on mathematical formulations used in the design of Fresnel lens with spherical facets. Further, a design chart for Fresnel lens with spherical facets is developed to determine aperture radius and design angle for a given focal length and focus size. Concentration ratio and spherical aberration for Fresnel lens with spherical facets are also compared with those of plano-convex lens and conventional Fresnel lens with triangular facets. Furthermore, the present mathematical model is validated with SolTrace model and with the experimental study conducted on a prototype of Fresnel lens with spherical facets fabricated using CO2 laser cutting machine. Focal length for the proposed Fresnel lens with spherical facets is found to be the same. However, concentration ratio computed from the present ray-tracing model is in fair agreement with SolTrace model and experimental data with percentage deviations at focal length 5.4% and 12.4%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号