首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ulrich V  Fischer P  Riemann I  Königt K 《Scanning》2004,26(5):217-225
An inverted fluorescence microscope was upgraded into a compact three-dimensional laser scanning microscope (LSM) of 65 x 62 x 48 cm dimensions by means of a fast kHz galvoscanner unit, a piezodriven z-stage, and a picosecond (ps) 50 MHz laser diode at 405 nm. In addition, compact turn-key near infrared femtosecond lasers have been employed to perform multiphoton fluorescence and second harmonic generation (SHG) microscopy. To expand the features of the compact LSM, a time-correlated single photon counting unit as well as a Sagnac interferometer have been added to realize fluorescence lifetime imaging (FLIM) and spectral imaging. Using this unique five-dimensional microscope, TauMap, single-photon excited (SPE), and two-photon excited (TPE) cellular fluorescence as well as intratissue autofluorescence of water plant leaves have been investigated with submicron spatial resolution, <270 ps temporal resolution, and 10 nm spectral resolution.  相似文献   

2.
We present combined epi-coherent anti-Stokes Raman scattering (CARS) and multiphoton imaging with both chemical discrimination and subcellular resolution on human skin in vivo. The combination of both image modalities enables label-free imaging of the autofluorescence of endogenous fluorophores by two-photon excited fluorescence, as well as imaging of the distribution of intercellular lipids, topically applied substances and water by CARS. As an example for medical imaging, we investigated healthy and psoriasis-affected human skin with both image modalities in vivo and found indications for different lipid distributions on the cellular level.  相似文献   

3.
In this study, we combined two-photon autofluorescence and second harmonic generation imaging to investigate the three-dimensional microstructure and nonlinear optical properties of tissue engineering scaffolds. We focused on five different types of scaffold materials commonly used in tissue engineering, including: open-cell polylactic acid, polyglycolic acid, collagen composite scaffold, collagraft bone graft matrix strip, and nylon. By the use of multiphoton microscopy and a motorized stage, we obtained high resolution, spectrally resolved structural information of the scaffolds over large areas or in three-dimensions. Our results show that the nonlinear optical properties of the scaffolds will enable us to spectrally and morphologically distinguish the different types of scaffold materials investigated. We envision multiphoton microscopy to be a useful technique in tissue engineering applications in understanding the interplay between cultured cells and the scaffold materials.  相似文献   

4.
Two-photon medical imaging has found its way into dermatology as an excellent method for noninvasive skin cancer detection without need of contrast agents as well as for in situ drug screening of topically-applied cosmetical and pharmaceutical components. There is an increasing demand to apply the multiphoton technology also for deep-tissue skin imaging as well as for intracorporal imaging. We report on the first clinical use of multiphoton endoscopes, in particular of a miniaturized rigid two-photon GRIN lens endoscope. The microendoscope was attached to the multiphoton tomograph DermaInspect and employed to detect the extracellular matrix proteins collagen and elastin in the human dermis of volunteers and patients with ulcera by in vivo second harmonic generation and in vivo two-photon autofluorescence.  相似文献   

5.
We present a combined multiphoton-acoustic microscope giving collocated access to the local morphological as well as mechanical properties of living cells. Both methods relay on intrinsic contrast mechanisms and dispense with the need of staining. In the acoustic part of the microscope, a gigahertz ultrasound wave is generated by an acoustic lens and the reflected sound energy is detected by the identical lens in a confocal setup. The achieved lateral resolution is in the range of 1 mum. Contrast in the images arises mainly from the local absorption of sound in the cells related to viscose damping. Additionally, acoustic microscopy can access the sound speed as well as the acoustic impedance of the cell membrane and the cell shape, as it is an intrinsic volume scanning technique. The multiphoton image formation bases on the detection of autofluorescence due to endogenous fluorophores. The nonlinearity of two-photon absorption provides submicron lateral and axial resolution without the need of confocal optical detection. In addition, in the near-IR cell damages are drastically reduced in comparison with direct excitation in the visible or UV. The presented setup was aligned with a dedicated procedure to ensure identical image areas. Combined multiphoton/acoustic images of living myoblast cells are discussed focusing on the reliability of the method.  相似文献   

6.
Multiphoton excitation was originally projected to improve live cell fluorescence imaging by minimizing photobleaching effects outside the focal plane, yet reports suggest that photobleaching within the focal plane is actually worse than with one photon excitation. We confirm that when imaging enhanced green fluorescent protein, photobleaching is indeed more acute within the multiphoton excitation volume, so that whilst fluorescence increases as predicted with the square of the excitation power, photobleaching rates increase with a higher order relationship. Crucially however, multiphoton excitation also affords unique opportunities for substantial improvements to fluorescence detection. By using a Pockels cell to minimize exposure of the specimen together with multiple nondescanned detectors we show quantitatively that for any particular bleach rate multiphoton excitation produces significantly more signal than one photon excitation confocal microscopy in high resolution Z‐axis sectioning of thin samples. Both modifications are readily implemented on a commercial multiphoton microscope system.  相似文献   

7.
The aim of this work is to demonstrate that multiphoton microscopy is a preferred technique to investigate intact cornea structure without slicing and staining. At the micron resolution, multiphoton imaging can provide both large morphological features and detailed structure of epithelium, corneal collagen fibril bundles and keratocytes. A large area multiphoton cross-section across an intact eye excised from a GFP mouse was obtained by a homebuilt multiphoton microscope. The broadband multiphoton fluorescence (435-700 nm) and second harmonic generation (SHG, 360-400 nm) signals were generated by the 760 nm output of a femtosecond titanium-sapphire laser. A water immersion objective (Fluor, 40X, NA 0.8; Nikon) was used to facilitate imaging the curve ocular surface. The multiphoton image over entire cornea provides morphological information of epithelial cells, keratocytes, and global collagen orientation. Specifically, our planar, large area multiphoton image reveals a concentric pattern of the stroma collagen, indicative of the laminar collagen organization throughout the stroma. In addition, the green fluorescence protein (GFP) labeling contributed to fluorescence contrast of cellular area and facilitated visualizing of inactive keratocytes. Our results show that multiphoton imaging of GFP labeled mouse cornea manifests both morphological significance and structural details. The second harmonic generation imaging reveals the collagen orientation, while the multiphoton fluorescence imaging indicates morphology and distribution of cells in cornea. Our results support that multiphoton microscopy is an appropriate technology for further in vivo investigation and diagnosis of cornea.  相似文献   

8.
Multiphoton microscopy in life sciences   总被引:13,自引:1,他引:12  
Near infrared (NIR) multiphoton microscopy is becoming a novel optical tool of choice for fluorescence imaging with high spatial and temporal resolution, diagnostics, photochemistry and nanoprocessing within living cells and tissues. Three‐dimensional fluorescence imaging based on non‐resonant two‐photon or three‐photon fluorophor excitation requires light intensities in the range of MW cm?2 to GW cm?2, which can be derived by diffraction limited focusing of continuous wave and pulsed NIR laser radiation. NIR lasers can be employed as the excitation source for multifluorophor multiphoton excitation and hence multicolour imaging. In combination with fluorescence in situ hybridization (FISH), this novel approach can be used for multi‐gene detection (multiphoton multicolour FISH). Owing to the high NIR penetration depth, non‐invasive optical biopsies can be obtained from patients and ex vivo tissue by morphological and functional fluorescence imaging of endogenous fluorophores such as NAD(P)H, flavin, lipofuscin, porphyrins, collagen and elastin. Recent botanical applications of multiphoton microscopy include depth‐resolved imaging of pigments (chlorophyll) and green fluorescent proteins as well as non‐invasive fluorophore loading into single living plant cells. Non‐destructive fluorescence imaging with multiphoton microscopes is limited to an optical window. Above certain intensities, multiphoton laser microscopy leads to impaired cellular reproduction, formation of giant cells, oxidative stress and apoptosis‐like cell death. Major intracellular targets of photodamage in animal cells are mitochondria as well as the Golgi apparatus. The damage is most likely based on a two‐photon excitation process rather than a one‐photon or three‐photon event. Picosecond and femtosecond laser microscopes therefore provide approximately the same safe relative optical window for two‐photon vital cell studies. In labelled cells, additional phototoxic effects may occur via photodynamic action. This has been demonstrated for aminolevulinic acid‐induced protoporphyrin IX and other porphyrin sensitizers in cells. When the light intensity in NIR microscopes is increased to TW cm?2 levels, highly localized optical breakdown and plasma formation do occur. These femtosecond NIR laser microscopes can also be used as novel ultraprecise nanosurgical tools with cut sizes between 100 nm and 300 nm. Using the versatile nanoscalpel, intracellular dissection of chromosomes within living cells can be performed without perturbing the outer cell membrane. Moreover, cells remain alive. Non‐invasive NIR laser surgery within a living cell or within an organelle is therefore possible.  相似文献   

9.
Aims: Atherosclerotic plaques vulnerable to rupture are almost always inflamed, and carry a large lipid core covered by a thin fibrous cap. The other components may include neovascularisation, intraplaque haemorrhage and spotty calcification. In contrast, stable plaques are characterised by a predominance of smooth muscle cells and collagen, and lipid core is usually deep seated or absent. This study is a proof of principle experiment to evaluate the feasibility of multiphoton microscopy (MPM) to identify aforementioned plaque components. Methods and Results: MPM is a nonlinear optical technique that allows imaging based on intrinsic tissue signals including autofluorescence and higher‐order scattering. In our study, MPM imaging was performed on morphologically diverse aortic and coronary artery plaques obtained during autopsy. Various histologically verified plaque components including macrophages, cholesterol crystals, haemorrhage, collagen and calcification were recognised by MPM. Conclusions: Recognition of the distinct signatures of various plaque components suggests that MPM has the potential to offer next‐generation characterisation of atherosclerotic plaques. The higher lateral resolution (comparable to histology) images generated by MPM for identifying plaque components might complement larger field of view and greater imaging depth currently available with optical coherence tomography imaging. As the next step MPM would need to be evaluated for intact vessel imaging ex vivo and in vivo.  相似文献   

10.
In vivo and in vitro multiphoton imaging was used to perform high resolution optical sectioning of human hair by nonlinear excitation of endogenous as well as exogenous fluorophores. Multiphoton fluorescence lifetime imaging (FLIM) based on time-resolved single photon counting and near-infrared femtosecond laser pulse excitation was employed to analyze the various fluorescent hair components. Time-resolved multiphoton imaging of intratissue pigments has the potential (i) to identify endogenous keratin and melanin, (ii) to obtain information on intrahair dye accumulation, (iii) to study bleaching effects, and (iv) to monitor the intratissue diffusion of pharmaceutical and cosmetical components along hair shafts.  相似文献   

11.
Multispectral fluorescence lifetime imaging by TCSPC   总被引:2,自引:0,他引:2  
We present a fluorescence lifetime imaging technique with simultaneous spectral and temporal resolution. The technique is fully compatible with the commonly used multiphoton microscopes and nondescanned (direct) detection. An image of the back-aperture of the microscope lens is projected on the input of a fiber bundle. The input of the fiber bundle is circular, and the output is flattened to match the input slit of a spectrograph. The spectrum at the output of the spectrograph is projected on a 16-anode PMT module. For each detected photon, the encoding logics of the PMT module deliver a timing pulse and the number of the PMT channel in which the photon was detected. The photons are accumulated by a multidimensional time-correlated single photon counting (TCSPC) process. The recording process builds up a four-dimensional photon distribution over the times of the photons in the excitation pulse period, the wavelengths of the photons, and the coordinates of the scan area. The method delivers a near-ideal counting efficiency and is capable of resolving double-exponential decay functions. We demonstrate the performance of the technique for autofluorescence imaging of tissue.  相似文献   

12.
Evaluation of spectral imaging for plant cell analysis   总被引:1,自引:0,他引:1  
Fluorescence imaging at high spectral resolution is now a practical reality and has great promise in plant cell biology. Emission spectral curve data can be used computationally to distinguish spectrally similar fluorophores, or to remove autofluorescence, and to spectrally analyse autofluorescent molecules, which are especially abundant in plant tissues. Examples of these applications in plant cells are given, and a comparison is made between the current offerings in spectral imaging laser scanning confocal microscopes.  相似文献   

13.
A plethora of optical techniques is currently available to obtain non‐destructive, contactless, real time information with subcellular spatial resolution to observe cell processes. Each technique has its own unique features for imaging and for obtaining certain biological information. However none of the available techniques can be of universal use. For a comprehensive investigation of biological specimens and events, one needs to use a combination of bioimaging methods, often at the same time. Some modern confocal/multiphoton microscopes provide simultaneous fluorescence, fluorescence lifetime imaging, and four‐dimensional imaging. Some of them can also easily be adapted for harmonic generation imaging, and to permit cell manipulation technique. In this work we present a multimodal optical workstation that extends a commercially available confocal microscope to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools. The nonlinear microscopy capabilities were added to the commercial confocal microscope by exploiting all the flexibility offered by the manufacturer. The various capabilities of this workstation as applied directly to reproductive biology are discussed. Microsc. Res. Tech. 79:567–582, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
We combine reflective confocal microscopy with multiphoton microscopy to form a minimally invasive technique to observe the cornea. The two imaging modalities allow detection of complementary information from the cornea. The autofluorescence signal shows the cytoplasm of epithelial cells, and the second harmonic generation signal is used to detect collagen, found mostly in the stroma of the cornea. The reflective confocal imaging allows detection of epithelial cells and keratocytes in the stroma. The system is first tested on bovine cornea. Assessment of the result on the bovine eye will be used to evaluate the potential of the system as a technique for in vivo clinical application.  相似文献   

15.
By monitoring coenzyme autofluorescence modifications. as an indicator of cell damage. the cellular response to femtosecond near-infrared (NIR) radiation (two-photon absorption) was compared with exposure to low-power UV A radiation (one-photon absorption). Excitation radiation from a tunable Ti-sapphire laser. focused through highnumerical- aperture microscope optics. provided diffractionlimited mlcrobeams of an adjustable peak power. Laser scanning NIR microscopy was used to detect spatially the intracellular distribution of fluorescent coenzymes by fluorescence intensity imaging as well as fluorescence lifetime imaging (T-mapping). Upon the onset of UV or NIR exposure. Chinese hamster ovary cells exhibited blue/green autofluorescence witq a mean lifetime of 2·2 ns. which was attributed to NAD(P)H in mitochondria. Exposure to 365 nm radiation from a high-pressure mercury lamp (1 m W. 300 J cm-2 ) resulted in oxidative stress correlated with increased autofluorescence intensity. onset of nuclear fluorescence. and a fluorescence lifetime decrease. The cellular response to femtosecond NIR micro beams depended significantly on peak power. Peak powers above a threshold value of about 0·5kW (average power: 6mW). 0·55kW (7mW) and 0·8kW (lOmW) at 730nm. 760nm and 800nm. respectively. resulted in the onset of short-lived luminescence with higher intensity (100x) than the intracellular NAD(P)H fluorescence. This luminescence. accompanied by destruction of cellular morphology. was localized and occurred in the mitochondrial region. In contrast. beams at a power of less than 0·5 kW allowed nondestructive fluorophore detection with high spatial and temporal resolution without modification of cellular redox state or cell morphology.  相似文献   

16.
Multiphoton microscopy is a powerful technique for achieving three-dimensional submicron imaging in biological specimens. However, specimen optical parameters such as refractive indices and scattering coefficients can result in the loss of image resolution and decreased signal in depth. These factors are coupled to the focusing objective's numerical aperture (NA) in limiting the achievable imaging depths. In this work, we performed multiphoton imaging on aqueous fluorescent solution, human skin, and rat tail tendon to show that, under the same immersion condition, lower NA objectives can examine more deeply into biological specimens and should be used when optimal imaging depths is desired.  相似文献   

17.
Dictyostelium discoideum is used extensively as a model organism for the study of chemotaxis. In recent years, an increasing number of studies of Dictyostelium chemotaxis have made use of fluorescence-based techniques. One of the major factors that can interfere with the application of these techniques in cells is the cellular autofluorescence. In this study, the spectral properties of Dictyostelium autofluorescence have been characterized using fluorescence microscopy. Whole cell autofluorescence spectra obtained using spectral imaging microscopy show that Dictyostelium autofluorescence covers a wavelength range from approximately 500 to 650 nm with a maximum at approximately 510 nm, and thus, potentially interferes with measurements of green fluorescent protein (GFP) fusion proteins with fluorescence microscopy techniques. Further characterization of the spatial distribution, intensity, and brightness of the autofluorescence was performed with fluorescence confocal microscopy and fluorescence fluctuation spectroscopy (FFS). The autofluorescence in both chemotaxing and nonchemotaxing cells is localized in discrete areas. The high intensity seen in cells incubated in the growth medium HG5 reduces by around 50% when incubated in buffer, and can be further reduced by around 85% by photobleaching cells for 5-7 s. The average intensity and spatial distribution of the autofluorescence do not change with long incubations in the buffer. The cellular autofluorescence has a seven times lower molecular brightness than eGFP. The influence of autofluorescence in FFS measurements can be minimized by incubating cells in buffer during the measurements, pre-bleaching, and making use of low excitation intensities. The results obtained in this study thus offer guidelines to the design of future fluorescence studies of Dictyostelium.  相似文献   

18.
Nonlinear optical microscopy and magnetic resonance imaging (MRI) address different properties of the sample and operate on different geometrical scales. MRI maps density and mobility of molecules tracking specific molecular signatures. Multiphoton imaging profits from the nonlinear absorption of light in the focus of a femtosecond laser source stimulating the autofluorescence of biomolecules. As this effect relies on a high light intensity, the accessible field of view is limited, but the resolution is very high (a few hundred nanometers). Here, we aim to link the different accessible scales and properties addressed in the different techniques to obtain a synoptic view. As model specimen we studied embryos of barley. Multiphoton stimulated autofluorescence images and images of second harmonic generation are achieved even down to low magnification (10x), low numerical aperture (N.A. 0.25) conditions. The overview images allowed morphological assignments and fluorescence lifetime imaging provides further information to identify accumulation of endogenous fluorophores. The second, complementary contribution from high-resolution MR images provides a 3D model and shows the embedding of the embryo in the grain. Images of the proton density were acquired using a standard 3D spin-echo imaging pulse sequence. Details directly comparable to the low magnification optical data are visible. Eventually, passing from the MR images of the whole grain via low magnification to high resolution autofluorescence data bridges the scale barrier, and might provide the possibility to trace transport and accumulation of, e.g., nutrients from large structure of the plant to the (sub-) cellular level.  相似文献   

19.
Three-dimensional maps of cellular metabolic oxidation/reduction states of rabbit cornea in situ were obtained by imaging the fluorescence of the naturally occurring reduced pyridine nucleotides (both reduced nicotinamide-adenine dinucleotide, NADH, and reduced nicotinamide-adenine dinucleotide phosphate, NADPH, denoted here as NAD(P)H). Autofluorescence images with submicrometre lateral resolution were obtained throughout the entire 400 μm thickness of the cornea. Two-photon excitation scanning laser microscopy with near-infrared excitation provided high fluorescence collection efficiency, reduced photodamage, and eliminated ultraviolet chromatic aberration, all of which have previously degraded the visualization of pyridine nucleotide fluorescence. Sharp autofluorescence images of the basal epithelium (40 μm within the cornea) show substantial subcellular detail, providing the ability to monitor autofluorescence intensity changes over time, which reflect changes in oxidative metabolism and cellular dynamics necessary for maintenance of the ocular surface. The autofluorescence was confirmed to be mostly of NAD(P)H origin by cyanide exposure, which increased the fluorescence from all cell types in the cornea by about a factor of two. Autofluorescence images of individual keratocytes in the stroma were observed only after cyanide treatment, while in the predominant extracellular collagen (> 90% of the stromal volume), fluorescence was not distinguished from the background. Observation of keratocyte metabolism demonstrates the sensitivity made available by two-photon microscopy for future redox fluorescence imaging of cellular metabolic states.  相似文献   

20.
Here we present a set of methods for documenting (exo-)morphology by applying autofluorescence imaging. For arthropods, but also for other taxa, autofluorescence imaging combined with composite imaging is a fast documentation method with high-resolution capacities. Compared to conventional micro- and macrophotography, the illumination is much more homogenous, and structures are often better contrasted. Applying different wavelengths to the same object can additionally be used to enhance distinct structures. Autofluorescence imaging can be applied to dried and embedded specimens, but also directly on specimens within their storage liquid. This has an enormous potential for the documentation of rare specimens and especially type specimens without the need of preparation. Also for various fossils, autofluorescence can be used to enhance the contrast between the fossil and the matrix significantly, making even smallest details visible. 'Life-colour' fluorescence especially is identified as a technique with great potential. It provides additional information for which otherwise more complex methods would have to be applied. The complete range of differences and variations between fluorescence macrophotography and different types of fluorescence microscopy techniques are here explored and evaluated in detail. Also future improvements are suggested. In summary, autofluorescence imaging is a powerful, easy and fast-to-apply tool for morphological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号