首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a lead-free positive temperature coefficient of resistivity (PTCR) material, (1– x mol%) BaTiO3– x mol% (Bi1/2K1/2) TiO3– y mol% Y2O3–0.5 mol% TiO2 (BT– x BKT–2 y Y–0.5TiO2) systems were prepared by the conventional solid-state reaction method. All samples containing <2 mol% BKT sintered in air possessed relatively low room-temperature resistivity (ρ25) and high positive temperature coefficient (PTC) effect. However, when the BKT content exceeded 2 mol%, the sample was not semiconductive after sintering in air. The effects of sintering schedule on the properties of PTCR ceramics were discussed. The results showed that the optimum composition of BT–1BKT–0.2Y–0.5TiO2, sintered at 1330°C for not-soaking and then fast quenched in air, achieved rather low ρ25 of 28 Ω·cm and a high jump of resistivity (maximum resistivity [ρmax]/minimum resistivity [ρmin]) of 4.0 orders of magnitude with T c about 155°C. The ρ25 of the as-sintered sample could be further reduced to about 10 Ω·cm by annealing in N2 at 450°C for 30 min, accompanied decrease on the PTC effect.  相似文献   

2.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

3.
4.
Sb2O5 were selected to substitute (Nb0.8Ta0.2)2O5 and the effects of Sb substitution on the dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics were studied. The perovskite Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics showed no obvious change with x value being no more than 0.08, and the pseudoperovskite unit cell parameters a = c , b and monoclinic angle β decrease with Sb concentration increasing. The dielectric properties of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics were found to be affected greatly by the substitution of Sb for Nb/Ta. The ɛ value of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics sintered at their densified temperature increased from 480 to 825 with x from 0 to 0.08, the tan δ value decreased sharply from 0.0065 to 0.0023 (at 1 MHz) with x increasing from 0 to 0.04, and then kept a stable lower tan δ value ∼0.0024 with x to 0.08. The temperature coefficient of capacitance values continuously decreased from a positive value of 1450 ppm/°C for x =0 to a negative value of −38.52 ppm/°C for x =0.08.  相似文献   

5.
The electrical resistivity of monocrystalline and polycrystalline TiB2, was measured under an inert atmosphere by a four-point ac impedance technique over the range 298 to 1373 K. The results are expressed in the form ρ-ρ298= m(T -298). The following values of ρ298 (μω.cm) and m (nω.cm-K-1) were determined: for polycrystalline TiB2 (69% dense) 18.2 and 95; for polycrystalline TiB2 (99% dense) 7.4 and 42; and for monocrystalline TiB2, 6.6 and 34.9.  相似文献   

6.
CaNdAlO4 microwave dielectric ceramics were modified by Ca/Ti co-substitution, and their dielectric characteristics were evaluated along with their structure and microstructures. Ca1+ x Nd1− x Al1− x Ti x O4 ( x =0, 0.025, 0.05, 0.10, 0.15, 0.20) ceramics with the relative density of over 95% theoretical density were obtained by sintering at 1400°–1450°C in air for 3 h, where the K2NiF4-type solid solution single phase was determined from the compositions of x <0.20, while a small amount of CaTiO3 secondary phase was detected for x =0.20. With Ca/Ti co-substitution in CaNdAlO4 ceramics, the dielectric constant (ɛr) increased with increasing x , and the temperature coefficient of resonant frequency (τf) was adjusted from negative to positive, while the Q × f 0 value increased significantly at first and reached an extreme value at x =0.025 and the maximum at x =0.15. The best combination of microwave dielectric characteristics were achieved at x =0.15 (ɛr=19.5, Q × f 0=93 400 GHz, τf=−2 ppm/°C). The improvement of the Q × f 0 value primarily originated from the reduced interlayer polarization with Ca/Ti co-substitution, while the decreased tolerance factor, the subsequent increased interlayer stress, and the appearance of CaTiO3 secondary phase brought negative effects upon the Q × f 0 value.  相似文献   

7.
Pb0.97La0.02(Zr0.87− x Sn x Ti0.13)O3 (PLZST, x =0.27, 0.17, 0.07)) thin films with the compositions in ferroelectric rhombohedral (FER) region, near the morphotropic phase boundary (MPB), were deposited on the Pt-electroded silicon (PtSi) substrates by the sol–gel process. The phase structure and surface morphology of PLZST thin films were analyzed by XRD and SEM, respectively. The dc electric field and temperature-dependent dielectric properties of the PLZST thin films were investigated in detail. The results indicated that the dielectric constant, remnant polarization, and the Curie temperature ( T c) of PLZST films were elevated with the decrease of Sn content. Hence, the larger dielectric tunability (τ) was obtained for PLZST thin films with x =0.07, and the maximum τ value was 78.1%.  相似文献   

8.
Porous glass-ceramics with a skeleton of the fast-lithium-conducting crystal Li1+ x Ti2− x Al x (PO4)3 (where x = 0.3–0.5) were prepared by crystallization of glasses in the Li2O─CaO─TiO2─Al2O3–P2O5 system and subsequent acid leaching of the resulting dense glass-ceramics composed of the interlocking of Li1+ x Ti2− x Al x (PO4)3 and β-Ca3(PO4)2 phases. The median pore diameter and surface area of the resulting porous Li1+ x Ti2− x Al x (PO4)3 glass-ceramics were approximately 0.2 μm and 50 m2/g, respectively. The electrical conductivity of the porous glass-ceramics after heating in LiNO3 aqueous solution was 8 × 10−5 S/cm at 300 K or 2 × 10−2 S/cm at 600 K.  相似文献   

9.
Low-temperature-sinterable (Zr0.8Sn0.2)TiO4 powders were prepared using 3 mol% Zn(NO3)2 additive and then compared with powders prepared using 3 mol% ZnO additive and no additives. Sintering at 1200°C for 2 h produced a dielectric ceramic with ρ= 98.6% of theoretical density (TD), ɛr= 38.4, Q × f (GHz) = 42000, and τ f =−1 ppm/°C. Sintering at 1250°C resulted in an excellent dielectric with ρ= 99% of TD, epsilonr= 40.9, Q × f (GHz) = 49000, and τ f =−2 ppm/°C. Scanning electron microscopy showed a microstructure with grains measuring 0.5 to 1 μm, and transmission electron microscopy revealed secondary phase in the grain boundaries.  相似文献   

10.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

11.
Physical and dielectric properties of (1– x )PbZrO3· x BaTiO3 thin films prepared by a chemical coating process have been investigated as a function of BaTiO3 ( x ) content (0≤ x ≤0.2). Changing the molar ratio between propylene glycol and water prior to the deposition optimized the chemical precursors. (1– x )PbZrO3- x BaTiO3 thin films that contained a majority of perovskite phase, but also contained large amounts of other phases, were fabricated. These films could withstand fields of 250 kV/cm at 1 kHz. The microstructure of the thin films was found to depend on the BaTiO3 content. The phase transition from antiferroelectric to ferroelectric was gradually induced as the BaTiO3 content increased. A maximum dielectric constant of ∼809 was obtained at the composition of x = 0.1. A maximum dielectric constant of ∼809 was obtained at the composition of x = 0.1. A thin film at the low-field antiferroelectric-ferroelectric phase boundary with x = 0.05 exhibited the highest P sat and P r values. The maximum values of these were 45 and 31 μC/cm2, respectively.  相似文献   

12.
X-ray photoelectron spectroscopy was performed to elucidate the catalytic activity of CH4 oxidation on perovskite-type Ca(Mn1− x Ti x )O3−δ synthesized at 1173 K in a flow of oxygen from a gel with citric acid and ethylene glycol. The Mn ion content decreases and the ratio of the Mn3+ ion in the Mn ion increases with increases in x . Ca(Mn1− x Ti x )O3−δ has a high catalytic activity of CH4 oxidation at x =0.4. These results indicate that the catalytic activity strongly depends on the Mn3+ ion content of the surface.  相似文献   

13.
Cation ordering and domain boundaries in perovskite Ca[(Mg1/3Ta2/3)1− x Ti x ]O3 ( x =0.1, 0.2, 0.3) microwave dielectric ceramics were investigated by high-resolution transmission electron microscopy (HRTEM) and Rietveld analysis. The variation of ordering structure with Ti substitution was revealed together with the formation mechanism of ordering domains. When x =0.1, the ceramics were composed of 1:2 and 1:1 ordered domains and a disordered matrix. The 1:2 cation ordering could still exist until x =0.2 but the 1:1 ordering disappeared. Neither 1:2 nor 1:1 cation ordering could exist at x =0.3. The space charge model was used to explain the cation ordering change from 1:2 to 1:1 and then to disorder. A comparison between the space charge model and random layer model was also conducted. HRTEM observations showed an antiphase boundary inclined to the (111) c plane with a projected displacement vector in the 〈001〉 c direction and ferroelastic domain boundaries parallel to the 〈100〉 c direction.  相似文献   

14.
The density of neodymium-doped calcium aluminate (<1 mol% Nd2O3·50% CaO·50% Al2O3) liquid was measured over a wide temperature range using an electrostatic levitation furnace. The density was obtained using an UV-based imaging technique that allowed excellent illumination throughout all phases of processing, including elevated temperatures. Over the 1560–2000 K temperature range, the density could be expressed as ρ( T ) = 2.83 × 103– 0.21( T – T m) (kg·m−3) (±2%) with T m= 1878 K, which yielded a volume coefficient of thermal expansion α( T ) = 7.5 × 10−5 K−1.  相似文献   

15.
Highly oriented K(Ta,Nb)O3 (Ta:Nb = 65:35) (KTN) thin films of perovskite structure were synthesized successfully on Pt(100)/MgO(100) substrates from a metal alkoxide solution through reaction control. Homogeneous KTN coating solutions prepared from KOC2H5, Ta(OC2H5)5, and Nb(OC2H5)5 in ethanol were analyzed by 1H, 13C, and 93Nb NMR spectroscopy. The KTN precursor included a molecular-level mixture of K[M(OC2H5)6] (M = Ta, Nb) units interacting in ethanol solution. X-ray pole figure measurement showed that perovskite KTN films crystallized on Pt(100)/MgO(100) substrates had not only a (100) orientation but also a three-dimensional regularity of grains. The remanent polarization and coercive field of the KTN film (thickness, 1.0 μm) crystallized at 700°C were 1.5 μC/cm2 and 8.7 kV/cm, respectively, at 225 K.  相似文献   

16.
[(K x Na1− x )0.95Li0.05](Nb0.95Ta0.05)O3 (K x NLNT) ( x= 0.40–0.60) lead-free piezoelectric ceramics were prepared by conventional solid-state sintering. The effects of K/Na ratio on the dielectric, piezoelectric, and ferroelectric properties of the K x NLNT ceramics were studied. The experimental results show that the electrical properties strongly depend on the K/Na ratio in the K x NLNT ceramics. The K x NLNT ( x =0.42) ceramics exhibit enhanced properties ( d 33∼242 pC/N, k p∼45.7%, k t∼47%, T c∼432°C, T o−t =48°C, ɛr∼1040, tanδ∼2.0%, P r∼26.4 μC/cm2, E c∼10.3 kV/cm). Enhanced electrical properties of the K x NLNT ( x =0.42) ceramics could be attributed to the polymorphic phase transition near room temperature. These results show that the K x NLNT ( x =0.42) ceramic is a promising lead-free piezoelectric material.  相似文献   

17.
The effects of V substitution for Nb on the dielectric and polarization properties of Sr0.5Bi2.25Na1.25(Nb3− x V x )O12 ceramics were investigated in this study. From the X-ray powder diffraction results, no secondary phase was detected in the composition range of 0–0.075. The remanent polarizations ( P r) of the samples in the composition range of 0–0.03 were improved by the V substitution for Nb and the highest P r value of approximately 15 μC/cm2 was obtained at x =0.03; it was noted that the V substitution for Nb was effective in improving the P r values in this ceramics. On the other hand, the coercive fields ( E c) of the samples were on the order of approximately 40 kV/cm in such a composition range. Moreover, the anomalous variations in the dielectric constant were observed in the composition range of 0–0.075. Also, it was observed that the dielectric loss increased drastically at the temperature of approximately 500°C.  相似文献   

18.
An all-alkoxide route to films and nano-phase powders of the La0.5Sr0.5CoO3 perovskite is described. To our knowledge, this is the first purely alkoxide-based route to (La1− x Sr x )CoO3, and it yields phase-pure and elementally homogeneous perovskite at 700°C by heating at 2°C/min. At 700°C, a cubic unit cell was obtained with a c=3.853Å, and after further heating to 1000°C, a rhombohedral cell could be indexed: a r=5.417 Å, αr=59.94°. Ninety to 130 nm thick films of La0.5Sr0.5CoO3 were obtained by spin coating. The gel-to-oxide conversion was studied in some detail, using thermo-gravimetric analysis, differential scanning calorimetry, powder X-ray diffraction, IR spectroscopy, and transmission electron microscope equipped with an energy-dispersive X-ray spectrometer.  相似文献   

19.
The sintering behavior, ordering state, and microwave dielectric properties of Ba1− x La2 x /3(Zn0.3Co0.7)1/3Nb2/3O3 Ceramics (0≤ x ≤0.06) were investigated in this paper. The X-ray diffraction (XRD) results show that all samples exhibit a single perovskite phase except for the sample with x ≥0.03. The sinterability is slightly improved by La doping. The long range order (LRO) degree on B-site is greatly increased with the increase of x value up to x =0.015 and then slightly decreased with the further increase of x due to the increasing amount of second phases. The dielectric constant at microwave frequency decreases slightly with the increase of x when x <0.015 and increases slightly with further increasing x for the samples sintered at 1375°C/10 h. The Q × f value increases with x up to x =0.015 and then decreases with further increase of x , which is consistent with the variation trend of LRO degree. The τf value decreases slightly with the increase of x up to 0.006, then increases greatly with the further increase of x . An optimized dielectric properties of ɛ r =34, Q × f =63 159, GHz and τf=5.21 ppm/°C were obtained for the x =0.01 sample sintered at 1425°C/10 h.  相似文献   

20.
X-ray diffraction patterns show that most samples of Y1-x PrxBa2Cu4O8 examined in the present study contained a single YBa2 Cu4O8 (1-2-4) superconductive phase for x<0.7.Lattice parameters a and b increased with Pr concentration, suggesting that most of the Pr is trivalent in Y1-x Prx-Ba2Cu4O8. The zero-resistance temperature, T co, decreases monotonically from 80 K at x=0 to 12 K at x=0.65, and superconducting transition widths tend to broaden for x>0. The room-temperature resistivity changes linearly until x=0.7 and increases abruptly at x=-0.75. The critical concentration, xcr, thus was estimated to be 0.7. The effective magnetic moments of Pr in Y 1-x PrxBa2Cu4O8 were 3.63., 3.35, and 3.23, μB for x=0.2, 0.4 and 0.6, respectively. In the R0.8 Pr0.2Ba2Cu4O8 system, the depression of Tc weakly depends on the ionic radius of rare-earth elements. Similarities and differences between Y 1-x PrxBa2Cu4O8 and Y1-xPrx-Ba2Cu3O7-y also were noted and are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号