首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We numerically investigate the detailed characteristics of chaos synchronization in semiconductor lasers subject to polarization-rotated optical feedback. The emission of the dominant TE mode of a drive laser is rotated 90 deg and fed back to the laser with time delay. The polarization-rotated TE mode is also injected with time delay into the TM mode of a second laser. Two types of synchronization with different time-lags are found, as in the case for synchronization in semiconductor lasers with nonrotated optical feedback. However, a significant difference to the nonrotated optical feedback case is that neither of the two types of synchronization requires matching of optical carrier frequency between the two lasers.  相似文献   

2.
Numerical studies for anticipating chaos synchronization in semiconductor lasers with optical feedback are presented. Anticipating chaos synchronization in a delay-differential system is believed to occur when all chaos parameters between the two systems are perfectly coincident with each other. However, we find new schemes of anticipating chaos synchronization when the parameters between the two systems have mismatches. Under these conditions, the time lag between the two laser outputs is equal to that of anticipating chaos synchronization, but the physical origin of the phenomenon comes from optical injection-locking or amplification in laser systems. We show the evidence of such chaotic synchronization using trajectories in the phase space of the phase difference and the carrier density in the laser oscillations.  相似文献   

3.
光反馈垂直腔面发射半导体激光器的混沌驱动同步   总被引:2,自引:2,他引:0  
基于光反馈垂直腔面发射半导体激光器动力学模型,通过分析光子数密度随光反馈强度变化的分岔情况,确定了激光器处于混沌态时的参数区间。利用混沌信号驱动同步方案,实现了两个被驱动激光器的精确混沌同步,并通过对两个被驱动激光器相关系数的分析,确定了它们达到精确混沌同步的参数区间。研究了参数失配对同步的影响,结果表明该同步方案有很好的稳健性。  相似文献   

4.
Synchronized chaotic optical communications at high bit rates   总被引:7,自引:0,他引:7  
Basic issues regarding synchronized chaotic optical communications at high bit rates using semiconductor lasers are considered. Recent experimental results on broadband, high-frequency, phase-locked chaos synchronization, and message encoding-decoding at 2.5 Gb/s are presented. System performance at a bit rate of 10 Gb/s is numerically studied for the application of three encryption schemes, namely chaos shift keying, chaos masking, and additive chaos modulation, to three chaotic semiconductor laser systems, namely the optical injection system, the optical feedback system, and the optoelectronic feedback system. By causing synchronization error in the forms of synchronization deviation and desynchronization bursts, the channel noise and the laser noise both have significant effects on the system performance at high bit rates. Among the three laser systems, the optoelectronic feedback system has the best performance while the optical feedback system has the worst. Among the three encryption schemes, only the performance of additive chaos modulation with low-noise lasers is acceptable at high bit rates.  相似文献   

5.
Theoretical and experimental investigations of chaos synchronization and its application to chaotic data transmissions in semiconductor lasers with optical feedback are presented. Two schemes of chaos synchronization-complete and generalized synchronization-are discussed in the delay differential systems. The conditions for chaos synchronization in the systems and the robustness for the parameter mismatches are studied. The possibility of secure communications based on the chaos masking technique in semiconductor lasers with optical feedback is also discussed, and message transmission of a 1.5-GHz sinusoidal signal is demonstrated. The method of bandwidth enhancement of chaotic carriers is proposed for broad-band chaos communications.  相似文献   

6.
Semiconductor lasers provide an excellent opportunity for communication using chaotic waveforms. We discuss the characteristics and the synchronization of two semiconductor lasers with optoelectronic feedback. The systems exhibit broadband chaotic intensity oscillations whose dynamical dimension generally increases with the time delay in the feedback loop. We explore the robustness of this synchronization with parameter mismatch in the lasers, with mismatch in the optoelectronic feedback delay, and with the strength of the coupling between the systems. Synchronization is robust to mismatches between the intrinsic parameters of the lasers, but it is sensitive to mismatches of the time delay in the transmitter and receiver feedback loops. An open-loop receiver configuration is suggested, eliminating feedback delay mismatch issues. Communication strategies for arbitrary amplitude of modulation onto the chaotic signals are discussed, and the bit-error rate for one such scheme is evaluated as a function of noise in the optical channel  相似文献   

7.
We propose and demonstrate a scheme for generating synchronized chaotic mode hopping in two wavelength-tunable lasers. Chaotic mode hopping resulting in large hops in wavelength is induced by delayed feedback of an electrical signal proportional to the intensity of the laser output which passes through an optical filter. Mode hopping among up to 11 modes was experimentally observed and optical signals in each wavelength band show a different on-off modulation time series. Analysis of the time series indicates high dimensionality. By using a unidirectional coupling method that injects part of the output of one laser into another, we can synchronize the chaotic mode hopping of two separate lasers and obtain synchronized chaotic on-off modulation patterns in multiple corresponding wavelength bands. The robustness of the synchronization with respect to the parameter mismatch and the effects of the coupling strength are investigated. The chaotic mode hopping dynamics and synchronization are well described with a numerical model that includes the characteristics of the laser tuning and the filter transmission. A multiplexed data transmission scheme using chaotic carriers is proposed and experiments demonstrate that multiple messages can be simultaneously recovered when chaos synchronization is achieved  相似文献   

8.
Private Message Transmission by Common Driving of Two Chaotic Lasers   总被引:1,自引:0,他引:1  
In this paper, we numerically demonstrate private data transmission using twin semiconductor lasers in which chaotic dynamics and synchronization are achieved by optical injection into the laser pair of a common, chaotic driving-signal, generated by a third laser subject to delayed optical feedback. This laser is selected with different parameters with respect to the twin pair, so that the emissions of the synchronized, matched lasers are highly correlated, whereas their correlation with the driver is low. The digital message modulates the emission of the transmitter, as in a standard CM scheme. Message recovery is then obtained by subtracting, from the transmitted chaos-masked message, the chaos, locally generated by the synchronized receiver laser. Simulations have been performed with the Lang–Kobayashi model, keeping into account both laser and photodetector noise. Private transmission has been demonstrated by investigating the effect of the parameter mismatch, between transmitter and receiver, on synchronization and message recovery.   相似文献   

9.
External optical feedback sensitivity in distributed feedback (DFB) semiconductor lasers is analyzed with special attention to phase-shifted and complex-coupled lasers. The effects of various structural parameters such as coupling strength, facet reflectivity, and corrugation phase angle on external optical feedback sensitivity are studied. The λ/4 phase-shifted index-coupled DFB laser exhibits low external optical feedback sensitivity for large index-coupling coefficient and high facet reflectivity. Pure gain-coupled DFB lasers perform better than the phase-shiftless uniform index-coupled DFB lasers but worse than λ/4 phase-shifted index-coupled lasers with high coupling strengths. External optical feedback sensitivity of complex-coupled lasers depends significantly on the index-to-gain coupling ratio, the phase between the index and gain gratings, and the total coupling  相似文献   

10.
为了研究多调制延时混沌系统的动力学,用数值计算法研究了非相干光反馈与非相干光注入半导体激光器的多常数延时与多调制延时混沌同步,由于该系统是基于非相干注入的,所以不需要接收激光器与发送激光器频率完全匹配。另外,研究了非相干光反馈半导体激光器输出自相关函数。结果表明,多常数延时和多调制延时两种情况下都能获得高质量的同步,但在多调制延时系统中自相关函数的延时标识可以被隐藏,这一特性大大提高了系统的安全性,非常适用于混沌保密通信系统。  相似文献   

11.
利用耦合时延增强激光混沌系统安全性能研究   总被引:1,自引:0,他引:1  
张巧  潘炜  李念强  江宁  项水英 《中国激光》2012,39(1):102009-59
安全性是混沌通信中的重要问题。基于一个外光反馈半导体激光器驱动两个互耦合激光器的混沌通信系统,研究激光混沌系统中反馈时延与耦合时延特征,并应用龙格-库塔法进行动态仿真。重点分析了当调节一些可控参数(耦合时延和驱动强度)时,能够改变两耦合激光器输出自相关函数中反馈时延和耦合时延幅值的差异,以此掩藏反馈时延,从而得出更优载波。仿真结果说明利用耦合时延可以增强激光混沌系统的安全性。最后给出了在优化载波后系统同步质量的讨论。  相似文献   

12.
We numerically study the synchronization or entrainment of two unidirectional coupled single-mode semiconductor lasers in a master-slave configuration. The emitter laser is an external-cavity laser subject to optical feedback that operates in a chaotic regime. The receiver can either operate at a chaotic regime similar to the emitter (closed-loop configuration) or without optical feedback and consequently under continuous-wave conditions when it is uncoupled (open-loop configuration). We compute the degree of synchronization of the two lasers as a function of the emitter-receiver coupling constant, the feedback rate of the receiver, and the detuning. We find that the closed-loop scheme has, in general, a larger region of synchronization when compared with the open loop. We also study the possibility of message encoding and decoding in both open and closed loops and their robustness against parameter mismatch. Finally, we compute the time it takes the system to recover the synchronization or entrainment state when the coupling between the two subsystems is lost. We find that this time is much larger in the closed loop than in the open one.  相似文献   

13.
Phase-Controlled Apertures Using Heterodyne Optical Phase-Locked Loops   总被引:1,自引:0,他引:1  
In this letter, we demonstrate the use of an electronic feedback scheme using a voltage controlled oscillator (VCO) to control the optical phase of individual semiconductor lasers (SCLs) phase locked to a common reference laser using heterodyne optical phase-locked loops (OPLLs). The outputs of two external cavity SCLs phase-locked to a common reference laser are coherently combined, and the variation in the relative optical path lengths of the combining beams is corrected by dynamically changing the phase of the offset radio-frequency signal fed into one of the OPLLs by means of a VCO. A stable power combination efficiency of 94% is achieved. This inherently different method of phase control, i.e., electronic rather than the use of electrooptic crystals, is deemed essential for new applications involving coherent optoelectronics.  相似文献   

14.
光纤混沌双向保密通信系统研究   总被引:7,自引:0,他引:7       下载免费PDF全文
颜森林 《电子学报》2005,33(2):266-270
本文提出光纤混沌双向保密通信设想,通过耦合光注入半导体激光器激光混沌全光耦合反馈同步系统和光纤传输信道,建立了光纤混沌双向通信系统模型,数值实现了该系统在长距离光纤传输中的同步,详细地分析了系统同步时间随光纤传输长度的关系.证明了光纤的交叉相位调制是限制激光混沌在光纤传输中同步的主要原因,导出了系统传输的非线性相移.数值模拟了具有正弦调制信号的调制频率0.5GHz混沌模拟通信和数字信号调制速率0.4Gbit/s以及20Gbit/s的混沌数字通信以及调制速率0.05Gbit/s 混沌键控通信的应用,计算出光纤混沌数字通信速率和同步误差等关系,还特别分析了系统解码特性和调制带宽,表明系统具有非常好的保密性能和具有高速率通信的能力.光纤混沌双向保密通信是可以实现的.  相似文献   

15.
We present the design, fabrication, and results from the first monolithically integrated optical phase-locked loop (OPLL) photonic integrated circuit (PIC) suitable for a variety of homodyne and offset phase locking applications. This InP-based PIC contains two sampled-grating distributed reflector (SG-DBR) lasers, semiconductor optical amplifiers (SOAs), phase modulators, balanced photodetectors, and multimode interference (MMI)-couplers and splitters. The SG-DBR lasers have more than 5 THz of frequency tuning range and can generate a coherent beat for a wide spectrum of frequencies. In addition, the SG-DBR lasers have large tuning sensitivities and do not exhibit any phase inversion over the frequency modulation bandwidths making them ideal for use as current controlled oscillators in feedback loops. These SG-DBR lasers have wide linewidths and require high feedback loop bandwidths in order to be used in OPLLs. This is made possible using photonic integration which provides low cost, easy to package compact loops with low feedback latencies. In this paper, we present two experiments to demonstrate proof-of-concept operation of the OPLL-PIC: homodyne locking and offset locking of the SG-DBR lasers.   相似文献   

16.
Regimes of chaotic synchronization in external-cavity laser diodes   总被引:1,自引:0,他引:1  
Chaotic synchronization is investigated experimentally using two diode lasers as transmitter and receiver. The transmitter laser is rendered chaotic by application of an optical feedback in an external-cavity configuration. Experimental conditions are found under which the synchronization diagram makes a transition from a positive to a negative gradient. A regime of operating conditions is identified in which the receiver laser is found to anticipate the dynamics of the transmitter laser. The anticipation time does not depend on the external-cavity length, but rather on the time of flight between the two lasers. Changes in the spectrum of the synchronized system are shown to be associated with the transition between anticipating and lag synchronization.  相似文献   

17.
Demultiplexing chaos from multimode semiconductor lasers   总被引:3,自引:0,他引:3  
We show numerically that the injection of two chaotic modes of a multimode semiconductor laser with optical feedback into two single-mode stand-alone semiconductor lasers leads to chaotic synchronization between the respective intensities. The effect of parameter mismatch between the transmitter and receiver lasers is examined, and it is concluded that the observed synchronization is a consequence of injection locking. Under these conditions, the possibility of using this demultiplexing scheme for message transmission is examined.  相似文献   

18.
通过数值模拟对两维3×3单模 激光网格阵列的动力学行为进行了研究。阵列中的激光束在光场中通过空间的局部耦合产生相互作用,可以通过对激光参数设置进行调节。数值研究表明,在一个相对较小区域的参数范围内,当任两台激光之间的空间耦合作用距离一定时,相应的激光束的强度之间可以实现混沌同步,并且具有特点: 处于次对角线或与其平行的对角线的对应位置上激光都可以实现混沌同步状态。通过对该激光阵列的功率谱和李雅普诺夫指数的计算和分析,可以确信所研究的强度同步的激光系统处于混沌状态。  相似文献   

19.
Starting from Fresnel diffraction theory, we derive analytic expressions for the lateral spatial dependence of feedback fields for the cases of conventional and phase-conjugate optical feedback. By using numerical simulations we show that for narrow-stripe gain-guided lasers, both types of optical feedback from an external cavity can convert the twin-lobed far fields into a nearly single-lobed far field. We also find that conventional and phase-conjugate feedbacks in broad-area lasers induce a spatial modulation of the lateral field that increases the tendency for filamentation at moderate (-30 dB) feedback levels  相似文献   

20.
A model of self-pulsation in two-section distributed feedback (DFB) lasers without a saturable absorber is developed by using generalized rate equations. The introduction of an effective differential gain in our model allows us to take into consideration both material and structural effects. The self-pulsation conditions are derived from a linear stability analysis. A mechanism based on a negative effective differential gain is proposed to explain the origin of self-pulsation in such lasers. By considering an injected optical signal, the optical synchronization of self-pulsating lasers is studied using nonlinear simulations. This leads to the determination of some locking-range properties, which are then compared to experimental and analytical results  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号